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ABSTRACT

Graphs are a powerful tool to represent complex interactions between various entities. A par-

ticular family of graph-based machine learning techniques called collective classification have been

applied to various security and privacy problems, e.g., malware detection, Sybil detection in social

networks, fake review detection, malicious website detection, auction fraud detection, APT infec-

tion detection, attribute inference attacks, etc.. Moreover, some collective classification methods

have been deployed in industry, e.g., Symantec deployed collective classification to detect malware;

Tuenti, the largest social network in Spain, deployed collective classification to detect Sybils.

In this dissertation, we aim to systematically study graph-based security and privacy problems

that are modeled via collective classification. In particular, we focus on collective classification

methods that leverage random walk (RW) or loopy belief propagation (LBP).

First, we propose a local rule-based framework to unify existing RW-based and LBP-based

methods. Under our framework, existing methods can be viewed as iteratively applying a different

local rule to every node in the graph. know about the node.

Second, we design a novel local rule for undirected graphs. Based on our local rule, we propose

a collective classification method that can maintain the advantages and overcome the disadvantages

of state-of-the-art undirected graph-based collective classification methods for Sybil detection.

Third, many security and privacy problems are modeled using directed graphs. Directed graph-

based security and privacy problems have their unique characteristics. Existing undirected graph-

based collective classification methods (e.g., LBP-based methods) cannot be applied to directed

graphs and existing directed graph-based methods (e.g., RW-based methods) cannot make full

use of the labeled training set. To address the issue, we develop a novel local rule for directed

graph-based Sybil detection and propose a collective classification method that captures unique

characteristics of directed graph-based Sybil detection.
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Finally, one key issue of all collective classification methods is that they either assign small

weights to a large number of edges whose two corresponding nodes have the same label or/and

assign large weights to a large number of edges whose two corresponding nodes have different

labels. Although collective classification has been studied and applied for security and privacy

problems for more than a decade, it is still challenging to assign edge weights such that an edge has

a large weight if the two corresponding nodes have the same label, and a small weight otherwise.

We develop a novel collective classification framework to address this long-standing challenge.

Specifically, we first formulate learning edge weights as an optimization problem, which, however,

is computationally challenging to solve. Then, we relax the optimization problem and design an

efficient joint weight learning and propagation algorithm to solve this approximate optimization

problem.
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CHAPTER 1. OVERVIEW

1.1 Collective Classification

Graphs are a powerful tool to represent complex interactions between various entities. A par-

ticular family of graph-based machine learning techniques called collective classification Sen et al.

(2008) have been studied from multiple communities such as security, data mining, and network-

ing. Figure 1.1 illustrates the setting of collective classification for binary classes: given 1) a graph,

which can be either undirected or directed, and 2) a training dataset, which consists of some la-

beled positive nodes (+) and/or labeled negative nodes (-), collective classification is to classify the

remaining unlabeled nodes (?) to be positive or negative simultaneously.

State-of-the-art collective classification methods Gyöngyi et al. (2004); Wu et al. (2006); Li

et al. (2013); Pandit et al. (2007); Chau et al. (2011); Mohaisen et al. (2011); Cao et al. (2012);

Gong et al. (2014a); Tamersoy et al. (2014); Akoglu et al. (2013); Li et al. (2014); Rayana and

Akoglu (2015); Stringhini et al. (2017); Wang et al. (2017b); Jia et al. (2017a); Wang et al. (2017a);

Boshmaf et al. (2015); Wang et al. (2018a); Gao et al. (2018) have three key steps. In Step I,

they assign a prior reputation score to every node in the graph based on the training dataset. In

Step II, they assign weights to edges in the graph, where a large weight of an edge (u, v) indicates

that u and v are likely to have the same label. In Step III, they iteratively propagate the prior

reputation scores among the weighted graph to obtain a posterior reputation score for every node.

The posterior reputation scores are used to classify or rank nodes. The details of one or more of

the three steps could be different for different collective classification methods. For instance, some

methods leverage random walks for propagation in Step III, while some methods leverage loopy

belief propagation in Step III, which we call random walk (RW)-based methods and loopy belief

propagation (LBP)-based methods, respectively.
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Figure 1.1 Illustration of collective classification.

1.1.1 RW-based methods

Depending on which labeled nodes in the training dataset are used to assign the prior reputation

scores in Step I, we classify RW-based methods into three categories, i.e., RW that only leverages

labeled negative nodes (RW-N), RW that only leverages positive nodes (RW-P), and RW that

leverages both labeled positive nodes and labeled negative nodes (RW-B). RW-N Wu et al. (2006);

Gyöngyi et al. (2004); Cao et al. (2012); Li et al. (2013); Boshmaf et al. (2015); Gong and Liu (2016)

leverages labeled negative nodes to assign prior reputation scores, e.g., every labeled negative node

in the training dataset has a prior reputation score of -1 (the absolute value of the reputation

score does not matter since these RW-based methods rely on relative reputation scores) and the

remaining nodes have prior reputation scores of 0. RW-P Wu et al. (2006); Yang et al. (2012)

leverages labeled positive nodes to assign prior reputation scores, e.g., every labeled positive node

has a prior reputation score of 1 and the remaining nodes have prior reputation scores of 0. RW-

B Zhu et al. (2003); Ye et al. (2011); Jia et al. (2017a) leverages both labeled positive nodes

and labeled negative nodes to assign prior reputation scores, e.g., labeled positive nodes, labeled

negative nodes, and unlabeled nodes have prior reputation scores of 1, -1, and 0, respectively.

In Step II, most RW-based methods simply set a constant weight to all edges. Íntegro Boshmaf

et al. (2015), developed under the context of Sybil detection in social networks, learns edge weights

using features extracted from nodes. Specifically, Íntegro first trains a node classifier based on
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nodes’ features to predict the probability that a node is a victim (a victim is a negative node

connecting to at least one positive node). Then, Íntegro assigns small weights to all edges of the

nodes that are predicted to be victims. For notation convenience, we denote Íntegro as RW-FLW

(Fixed Learnt Weights) since it learns the edge weights and fixes them in Step II.

In Step III, different methods use different random walks to propagate the reputation scores.

For instance, on an undirected graph, RW-N, RW-P, and RW-FLW iteratively distribute a node’s

current reputation score to its neighbors and a node sums the reputation scores distributed from

its neighbors as its new reputation score. In particular, a node u shares a fraction of its reputation

score to a neighbor v, where the fraction is the edge weight divided by the weighted degree of u.

On a directed graph, RW-N Gyöngyi et al. (2004) (or RW-P Wu et al. (2006); Yang et al. (2011))

shares a fraction of node u’s current reputation score to each outgoing (or incoming) neighbor,

where the fraction is the edge weight divided by the total weights of u’s outgoing (or incoming)

edges. RW-B is applicable to undirected graphs and uses a different random walk to propagate

reputation scores. Specifically, the fraction is the edge weight divided by the weighted degree of v

instead of u when u shares its reputation score to a neighbor v.

1.1.2 LBP-based methods

These methods Pandit et al. (2007); Chau et al. (2011); Gong et al. (2014a); Tamersoy et al.

(2014); Akoglu et al. (2013); Li et al. (2014); Rayana and Akoglu (2015); Wang et al. (2017b,a);

Gao et al. (2018); Wang et al. (2018a) leverage both labeled positive nodes and labeled negative

nodes in the training dataset to assign prior reputation scores in Step I, e.g., labeled positive

nodes, labeled negative nodes, and unlabeled nodes have prior reputation scores of 1, -1, and 0,

respectively. In Step II, most LBP-based methods simply set a constant weight to all edges in the

graph. SybilFuse Gao et al. (2018), developed under the context of Sybil detection, learns edge

weights using features extracted from the graph structure. Specifically, SybilFuse first trains a node

classifier using structure-based node features (e.g., local clustering coefficient) to predict the prior

reputation score for each node. Then, SybilFuse uses the prior reputation scores to assign edge
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weights in a way that a larger edge weight is assigned if the two corresponding nodes are more

likely to have the same label based on the prior reputation scores. We note that SybilFuse can also

extract structure-based edge features (e.g., common neighbors between two nodes) to train an edge

classifier to assign the edge weights. To stress the fact that SybilFuse learns edge weights and fixes

them in Step II, we denote it as LBP-FLW.

In Step III, these LBP-based methods Pandit et al. (2007); Chau et al. (2011); Gong et al.

(2014a); Tamersoy et al. (2014); Akoglu et al. (2013); Li et al. (2014); Rayana and Akoglu (2015)

leverage either a standard LBP Pearl (1988) or an optimized LBP Gatterbauer et al. (2015); Wang

et al. (2017b,a); Gatterbauer (2017); Wang et al. (2018a) to propagate the reputation scores among

the weighted graph. The optimized LBP is an order of magnitude more efficient than the standard

LBP. On an undirected graph, the optimized LBP shares a fraction of a node u’s reputation

score to its neighbor v, where the fraction is simply the edge weight, and a node sums its prior

reputation score and the reputation scores shared from its neighbors as its new reputation score in

each iteration. On a directed graph, the optimized LBP shares a node u’s reputation score to its

neighbor v like on an undirected graph if both the directed edges (u, v) and (v, u) exist. However,

when u connects v with only an outgoing edge, the optimized LBP shares u’s reputation score with

v like on an undirected graph only if u’s current reputation score is negative. When u connects

v with only an incoming edge, the optimized LBP shares u’s reputation score with v only if u’s

current reputation score is positive.

1.2 Modeling Security/Privacy Problems As Collective Classification

Studies from multiple communities–such as security, data mining, and networking–have shown

that various security and privacy problems can be modeled as collective classification on graphs.

Such security and privac problems include malware detection Chau et al. (2011); Ye et al. (2011);

Rajab et al. (2013); Tamersoy et al. (2014); Stringhini et al. (2017), Sybil detection in social

networks Yu et al. (2006, 2008); Danezis and Mittal (2009); Viswanath et al. (2010); Mohaisen

et al. (2011); Yang et al. (2011); Cao et al. (2012); Boshmaf et al. (2015); Gong et al. (2014a); Fu
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Table 1.1 Representative methods developed for different security and privacy applica-

tions. Graph Type: “Undir” and “Dir” respectively indicate a collective classifi-

cation method uses an undirected graph or a directed graph. Training Dataset :

“Neg”, “Pos”, or “Both” means that a method leverages labeled negative nodes,

labeled positive nodes, or both to assign prior reputation scores. Weight Learn-

ing : “Y” or “N” means that a method learns edge weights or does not. We note

that all these methods assign edge weights and fix them in Step II.

Method Application
Graph
Type

Training
Dataset

Weight
Learning

RW

SybilGuard Yu et al. (2006) Sybil Detection Undir Neg N

SybilLimit Yu et al. (2008) Sybil Detection Undir Neg N

SybilInfer Danezis and Mittal (2009) Sybil Detection Undir Neg N

SybilRank Cao et al. (2012) Sybil Detection Undir Neg N

CIA Yang et al. (2012) Sybil Detection Dir Pos N

Íntegro Boshmaf et al. (2015) Sybil Detection Undir Neg Y

SmartWalk Liu et al. (2016) Sybil Detection Undir Neg N

SybilWalk Jia et al. (2017a) Sybil Detection Undir Both N

ELSIEDET Zheng et al. (2018) Sybil Detection Undir Pos N

TrustRank Gyöngyi et al. (2004) Mal. Web. Detection Dir Neg N

DistrustRank Wu et al. (2006) Mal. Web. Detection Dir Pos N

Li et al. Li et al. (2013) Mal. Web. Detection Dir Neg N

Ye et al. Ye et al. (2011) Malware Detection Undir Both N

Marmite Stringhini et al. (2017) Malware Detection Undir Both N

RWwR-SAN Gong et al. (2014b) Attribute Inference Undir Pos N

VAIL Gong and Liu (2016) Attribute Inference Undir Pos N

EdgeExplain Chakrabarti et al. (2017) Attribute Inference Undir Both N

LBP

SybilBelief Gong et al. (2014a) Sybil Detection Undir Both N

SybilSCAR Wang et al. (2017b, 2018a) Sybil Detection Undir Both N

GANG Wang et al. (2017a) Sybil Detection Dir Both N

SybilFuse Gao et al. (2018) Sybil Detection Undir Both Y

Burst Fei et al. (2013) Fake Review Detection Undir Both N

FraudEagle Akoglu et al. (2013) Fake Review Detection Undir Both N

SpEagle Rayana and Akoglu (2015) Fake Review Detection Undir Both N

Polonium Chau et al. (2011) Malware Detection Undir Both N

AESOP Tamersoy et al. (2014) Malware Detection Undir Both N

NetProbe Pandit et al. (2007) Auction Fraud Detection Undir Both N

Olteanu et al. Olteanu et al. (2017) Attribute Inference Undir Both N

AttriInfer Jia et al. (2017b) Attribute Inference Undir Both N
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Table 1.2 Possible meanings of nodes, edges, positive, and negative in example security

and privacy application scenarios.

Problem Nodes Edges Positive Negative

Sybil Detection Users
Friendship,
Following

Sybil Benign User

Fake Review Detection
Users, Reviews,

Products
Reviewing Fake Review Genuine Review

Malware Detection Files, Hosts Appearance Malware Benign File

Malicious Website Detection Websites Redirection Malicious Website Benign Website

Attribute Inference Attack Users Friendship Having the AttributeNot Having the Attribute

et al. (2017); Wang et al. (2017b, 2018a); Jia et al. (2017a); Wang et al. (2017a); Zheng et al. (2018);

Gao et al. (2018), fake review detection Akoglu et al. (2013); Li et al. (2014); Rayana and Akoglu

(2015), malicious website detection Gyöngyi et al. (2004); Wu et al. (2006); Li et al. (2013), auction

fraud detection Pandit et al. (2007), APT infection detection Oprea et al. (2015), and attribute

inference attacks Zheleva and Getoor (2009); Gong et al. (2014b); Chaabane et al. (2012); Gong

and Liu (2016); Jia et al. (2017b); Olteanu et al. (2017); Gong and Liu (2018). Moreover, some

collective classification methods have been deployed in industry, e.g., Symantec deployed collective

classification to detect malware Tamersoy et al. (2014) and Tuenti, the largest social network in

Spain, deployed collective classification to detect Sybils Cao et al. (2012); Boshmaf et al. (2015).

For different graph-based security and privacy applications, nodes represent different entities,

edges represent different relationships, and the labels “positive” and “negative” have different

semantic meanings. Table 1.1 list representative methods developed for different security and

privacy applications. Table 1.2 summarizes several security and privacy problems that can be

modeled as collective classification on graphs. We note that some security problems Kwon et al.

(2015); Feng et al. (2016); Xu et al. (2017) can be modeled as graph analytics other than collective

classification. However, we focus on collective classification based security/privacy analytics.

• Sybil detection in social networks. Social networks (e.g., Facebook, Twitter, Sina Weibo)

are fundamentally vulnerable to an attack called Sybil attack, in which an attacker manages

a large number of malicious users (also called Sybils). An attacker can use these Sybils

perform various malicious activities such as disrupting democratic election Hacking Election.
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(2016), influencing financial market Hacking Financial Market. (2016), distributing spams

and phishing attacks Thomas et al. (2011), as well as harvesting private user data Bilge et al.

(2009). Therefore, detecting Sybils in social networks is a fundamental security research

problem. Various graph-based collective classification methods Gong et al. (2014a); Gao et al.

(2015); Wang et al. (2017b); Jia et al. (2017a); Fu et al. (2017); Pandit et al. (2007); Danezis

and Mittal (2009); Cao et al. (2012); Rayana and Akoglu (2015); Gyöngyi et al. (2004); Wu

et al. (2006); Yang et al. (2012); Boshmaf et al. (2015) have been proposed to detect Sybils

on social graphs. An example graph-based method called SybilRank Cao et al. (2012) and

its enhanced version called Integro Boshmaf et al. (2015) have been deployed by Tuenti, the

largest social network in Spain, to detect a large amount of Sybils. In a social graph, nodes

are users and edges represent friendships or following relationships between users; a positive

node means a Sybil and a negative node means a benign user.

• Malware detection. Imagine many end hosts have installed a certain antivirus software

from a certain security company (e.g., Symantec). The security company has access to the

executable files on all these hosts. Therefore, the security company can construct a host-file

graph to represent the relationships between hosts and executable files. Specifically, in this

graph, a node is a host or an executable file; an edge between a host and an executable file

means that the file is on the host.

In malware detection, a host-file graph is constructed to represent the relationships between

hosts and executable files Chau et al. (2011); Ye et al. (2011); Rajab et al. (2013); Tamersoy

et al. (2014); Stringhini et al. (2017). Specifically, in this graph, a node is a host or an

executable file; an edge between a host and an executable file means that the file appears

on the host; a positive node means a malware or compromised host, while a negative node

means a benign file or normal host.

• Fake review detection. Online reviews capture the testimonials of “real” people and

help shape the decisions of other consumers. Financial incentives associated with reviews,

however, have created a market of (often paid) users to fabricate fake reviews to either un-
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justly hype (for promotion) or defame (under competition) a product or business. Therefore,

detecting fake reviews in social graphs is important. In fake review detection, a user–review–

product graph is constructed to represent the relationships between users, reviews, and prod-

ucts Rayana and Akoglu (2015). In this graph, a node is a user, a review, or a product; an

edge between a user and a review means that the user writes the review; an edge between a

review and a product means that the review is for the product; a positive node means a fake

review while a negative node means a genuine review.

• Attribute inference attacks in social networks. Attribute inference has serious impli-

cations for Internet privacy as well as applications for targeted advertisements and personal-

ized recommendation. Therefore, various parties (e.g., cyber criminal, online social network

provider, advertiser, data broker, and surveillance agency) are motivated to perform attribute

inference. In the attribute inference attack, an attacker aims to infer users’ private attributes

(e.g., locations, sexual orientation, and interests) using their public data (e.g., page likes on

Facebook and friend list) in social networks. The graph is the social graph between users;

a node is positive if the node has a given attribute (e.g., republican), otherwise the node is

negative.

1.3 Pros and Cons of Existing Collective Classification Methods

RW-based methods have the following pros: 1) they are scalable; 2) they can guarantee to

converge; 3) they have theoretically guaranteed performance; and 4) they are applicable to both

undirected and directed graphs. However, they suffer from several key limitations: 1) they are not

robust to label noise in the training dataset. The label of a user is noisy if the label is incorrect.

Label noise often exists in practice due to human mistakes when manually labeling users Thomas

et al. (2011); 2) they have limited performance in graphs with weak homophily. Strong homophily

means that two connected nodes are likely to share the same label with high probability. LBP-

based methods can 1) leverage both labeled positive nodes and labeled negative nodes; 2) be

robust to label noise; and 3) tolerate graphs with a relative weak homophily. However, 1) they
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cannot guarantee convergence on real-world graphs; 2) they are not scalable; 3) they do not have

theoretically guaranteed performance; and 4) they cannot be directly applied to directed graphs.

Furthermore, a common limitation of both RW-based methods and LBP-based methods is that

they assign edge weights inappropriately.

1.4 Organization of The Dissertation

The focus of this dissertation is to study security and privacy problems that are modeled via

collective classification, and address the limitations of existing RW-based and LBP-based collective

classification methods.

In Chapter 2, we develop a local rule-based framework to unify existing RW-based and LBP-

based methods. Under our framework, different collective classification methods reduce to designing

different local rules.

In Chapter 3, we design a novel local rule for undirected graph-based Sybil detection and propose

a method that integrates advantages of existing RW-based and LBP-based Sybil detection methods,

while overcoming their limitations. For instance, our method can guarantee to converge and has

theoretically guaranteed performance.

In Chapter 4, we design a novel local rule for directed graph-based Sybil detection. In contrast to

undirected graphs, directed graph-based Sybil detection has its unique characteristics. We propose

a customized pairwise Markov Random Field model to capture these unique characteristics, and

infer the model via LBP. Furthermore, we optimize our method to make it scalable and convergent.

In Chapter 5, we design an edge weight learning framework for graph-based collective classifi-

cation methods. Our framework formulates learning edge weights as an optimization problem and

learns edge weights such that an edge has a large weight if the two corresponding nodes have the

same label, and a small weight otherwise.

Finally, we conclude the dissertation and discuss several future directions in Chapter 6.
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CHAPTER 2. COLLECTIVE CLASSIFICATION UNDER A LOCAL

RULE-BASED FRAMEWORK

2.1 Our Local Rule-based Framework

State-of-the-art collective classification methods Gyöngyi et al. (2004); Wu et al. (2006); Li

et al. (2013); Pandit et al. (2007); Chau et al. (2011); Mohaisen et al. (2011); Cao et al. (2012);

Gong et al. (2014a); Tamersoy et al. (2014); Akoglu et al. (2013); Li et al. (2014); Rayana and

Akoglu (2015); Stringhini et al. (2017); Wang et al. (2017b); Jia et al. (2017a); Wang et al. (2017a);

Boshmaf et al. (2015); Wang et al. (2018a); Gao et al. (2018) in social graphs can be grouped into

Random Walk (RW)-based methods and Loop Belief Propagation (LBP)-based methods. Given a

training dataset, these methods iteratively propagate label information among the social graph to

predict labels for users. RW-based methods implement the propagation using random walks, while

LBP-based methods implement the propagation using Loopy Belief Propagation Pearl (1988).

We can unify existing RW-based methods Mohaisen et al. (2011); Cao et al. (2012); Yang et al.

(2012); Boshmaf et al. (2015); Liu et al. (2016) and LBP-based methods Gong et al. (2014a); Gao

et al. (2018) into a local rule-based framework, although RW-based methods and LBP-based meth-

ods use very different mathematical foundations (i.e., RW vs. LBP). Specifically, these methods

first assign the prior knowledge of all nodes using a training dataset. Then, they propagate the

prior knowledge among the social network to obtain the posterior knowledge via iteratively apply-

ing their local rules to every node. A local rule is to update the posterior knowledge of a node by

combining the influences from its neighbors with its prior knowledge. We call the influence from

a neighbor neighbor influence. Figure 2.1 shows our unified framework. Under our framework,

designing a new collective classification method is reduced to designing a new local rule.

Notations: We denote by wuv the weight of the edge (u, v), Γu the set of neighbors of node u, and

du the total weights of edges linked to u, i.e., du =
∑

v∈Γu
wuv. In RW-based methods Mohaisen
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Figure 2.1 Our proposed framework to unify state-of-the-art RW-based and LBP-based
Sybil detection methods.

et al. (2011); Yang et al. (2012); Boshmaf et al. (2015), edge weights model the relative importance

(e.g., level of trust) of edges. In LBP-based method Gong et al. (2014a), an edge weight wuv models

the tendency that u and v share the same label. We denote by qu and pu the prior knowledge and

posterior knowledge of the node u, respectively. In RW-based methods, qu and pu are the prior

and posterior reputation scores of u, respectively, and they represent relative benignness of nodes.

In LBP-based methods, qu and pu are the prior and posterior probabilities that node u is a Sybil,

respectively.

2.1.1 Additive Local Rule of RW-based Methods

State-of-the-art RW-based methods Mohaisen et al. (2011); Cao et al. (2012); Yang et al. (2012);

Boshmaf et al. (2015) first assign prior reputation scores for every node using a training dataset.

Then they iteratively apply the following local rule to every node:

pu = (1− α)
∑
v∈Γu

pv
wuv

dv︸ ︷︷ ︸
neighbor influence

+α qu︸︷︷︸
prior knowledge

, (2.1)

where α ∈ [0, 1] is called a restart probability of the random walk. We note that SybilRank uses a

restart probability of 0 and normalizes the final reputation scores by node degrees.

We have two observations for the additive local rule. First, the neighbor influence from a

neighbor v to u is a fraction of v’s current reputation score pv, and the fraction is proportional

to the edge weight wuv. Second, this local rule combines the prior knowledge and the neighbor

influences linearly to update the posterior knowledge about a node.
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2.1.2 Multiplicative Local Rule of LBP-based Methods

SybilBelief Gong et al. (2014a), a LBP-based method, associates a binary random variable xu

with each node u, where xu = 1 indicates that u is Sybil while xu = −1 indicates that u is benign.

Then, qu and pu are the prior and posterior probabilities that xu = 1, respectively. SybilBelief first

assigns the prior probabilities for nodes using a set of labeled benign nodes and/or a set of labeled

Sybils, and then it iteratively applies the following local rule Gong et al. (2014a):

mvu(xu)︸ ︷︷ ︸
neighbor influence

=
∑
xv

φv(xv)ϕvu(xv, xu)
∏

z∈Γv/u

mzv(xv) (2.2)

pu =

prior knowledge︷︸︸︷
qu

∏
v∈Γu

mvu(1)

qu
∏

v∈Γu
mvu(1) + (1− qu)

∏
v∈Γu

mvu(−1)
, (2.3)

where node potential φv(xv) and edge potential ϕvu(xv, xu) are defined as follows:

φv(xv) :=


qv if xv = 1

1− qv if xv = −1,

ϕvu(xv, xu) :=


wvu if xuxv = 1

1− wvu if xuxv = −1.

We also have two observations for the multiplicative local rule. First, this local rule explicitly

models neighbor influences. Specifically, the neighbor influence from a neighbor v to u (i.e., mvu(xu))

is defined in Equation 2.2. To compute the neighbor influence mvu(xu), u’s neighbor v needs to

multiply the neighbor influences from all its neighbors except u. Second, according to Equation 2.3,

this local rule combines the neighbor influences with the prior probability nonlinearly.

2.1.3 Comparing Additive Local Rule with Multiplicative Local Rule

LBP-based multiplicative local rule can tolerate a relatively larger fraction of label noise because

of its nonlinearity Gong et al. (2014a), and it can leverage both labeled benign nodes and labeled

Sybils. However, LBP-based multiplicative local rule is space and time inefficient because it requires

a large amount of space and time to maintain the neighbor influences associated with every edge,

and methods using this local rule are not guaranteed to converge.
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CHAPTER 3. COLLECTIVE CLASSIFICATION ON UNDIRECTED

GRAPHS FOR SYBIL DETECTION IN SOCIAL NETWORKS

3.1 Introduction

Most collective classification methods Yu et al. (2006, 2008); Danezis and Mittal (2009); Mo-

haisen et al. (2011); Cao et al. (2012); Yang et al. (2012); Boshmaf et al. (2015); Liu et al. (2016);

Jia et al. (2017a); Zhang et al. (2016); Gong et al. (2014a); Gao et al. (2018); Fu et al. (2017);

Wang et al. (2017a) for Sybil detection can be grouped into Random Walk (RW)-based methods

and Loop Belief Propagation (LBP)-based methods. RW-based methods Yu et al. (2006, 2008);

Danezis and Mittal (2009); Mohaisen et al. (2011); Cao et al. (2012); Yang et al. (2012); Boshmaf

et al. (2015); Liu et al. (2016); Jia et al. (2017a) suffer from the major limitations: 1) they can

only leverage either labeled benign users or labeled Sybils in the training dataset, but not both,

which limits their detection accuracies; and 2) they are not robust to label noise in the training

dataset. The label of a user is noisy if the label is incorrect. Label noise often exists in practice

due to human mistakes when manually labeling users Thomas et al. (2011); Wang et al. (2013).

LBP-based methods Gong et al. (2014a); Gao et al. (2018); Fu et al. (2017) suffer from the major

limitations: 1) they cannot guarantee convergence on real-world social networks; 2) they are not

scalable; and 3) they do not have theoretically guaranteed performance. The first limitation makes

LBP-based methods sensitive to the number of iterations that the methods run.

Our work: We propose a novel collective classification method, called SybilSCAR, to perform

Sybil detection in undirected social networks. SybilSCAR combines the advantages of existing

RW-based methods and LBP-based methods, while overcoming their limitations. Specifically,

SybilSCAR is Scalable, C onvergent, Accurate, and Robust to label noise.

First, we design a novel local rule that integrates the advantages of both RW-based methods and

LBP-based methods, while overcoming their limitations. SybilSCAR iteratively applies our local
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rule to every user. Our local rule, like RW-based methods and LBP-based methods, leverages the

homophily property of social networks. Homophily means that two linked users share the same label

with a high probability. In our local rule, we associate a weight with each edge, which represents the

probability that the two corresponding users have the same label. For a neighbor v of u, our local

rule models v’s influence (we call it neighbor influence) to u’s label as the probability that u is a

Sybil, given v’s information alone. Our local rule combines neighbor influences and prior knowledge

about a user in a multiplicative way to update knowledge about the user’s label. Moreover, we

linearize the multiplicative local rule in order to make SybilSCAR convergent.

Second, we evaluate SybilSCAR and compare it with state-of-the-art RW-based methods and

LBP-based methods both theoretically and empirically. Theoretically, we derive a bound on the

number of Sybils that are accepted into a social network for SybilSCAR. Our bound is tighter than

those of the existing methods. Moreover, we analyze the condition when SybilSCAR is guaranteed

to converge. Empirically, we compare SybilSCAR with SybilRank Cao et al. (2012), a state-

of-the-art RW-based method, and SybilBelief Gong et al. (2014a), a state-of-the-art LBP-based

method, using 1) three real-world social networks with synthesized Sybils and 2) a large-scale Twit-

ter dataset (41.7M users and 1.2B edges) with real Sybils. Our empirical results demonstrate that

1) SybilSCAR achieves better detection accuracies than SybilRank and SybilBelief, 2) SybilSCAR

is robust to larger label noise than SybilRank, and is as robust as SybilBelief; 3) SybilSCAR is as

space and time efficient as SybilRank, but is several times more space efficient and one order of

magnitude more time efficient than SybilBelief; 4) SybilSCAR and SybilRank are convergent, but

SybilBelief is not. For instance, in the large Twitter dataset, among the top-10K users that are

predicted to be most likely Sybils by SybilRank, SybilBelief, and SybilSCAR, 0.33%, 77.5%, and

95.8% of them are real Sybils, respectively.

In summary, our key contributions are as follows:

• We design a novel local rule for undirected graphs and develop a novel collective clas-

sification method, called SybilSCAR, to detect Sybils in social networks. SybilSCAR is

convergent, scalable, robust to label noise, and more accurate than existing methods.
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• We evaluate SybilSCAR both theoretically and empirically, and compare it with a state-

of-the-art RW-based method and a state-of-the-art LBP-based method. Our theoretical

results show that our method has a tighter bound on the number of Sybils that are falsely

accepted into a social network than existing methods. Our empirical results on multi-

ple social network datasets demonstrate that SybilSCAR significantly outperforms the

state-of-the-art RW-based method in terms of accuracy and robustness to label noise, and

that SybilSCAR outperforms the state-of-the-art LBP-based method in terms of accuracy,

scalability, and convergence.

3.2 Problem Definition

We formally define our undirected graph-based Sybil detection problem in social networks,

introduce our design goals, and describe the threat model we consider in the paper.

3.2.1 Undirected Graph-based Sybil Detection

Suppose we are given an undirected social network G = (V,E), where a node v ∈ V represents

a user and an edge (u, v) ∈ E indicates a (mutual) relationship between u and v. |V | and |E| are

number of nodes and edges, respectively. For instance, on Facebook, an edge (u, v) could mean

that u is in v’s friend list and vice versa. On Twitter, an edge (u, v) could mean that u follows v.

Our purpose is to design the local rule defined on the social networks to perform Sybil detection.

Accordingly, we call this problem local rule-based Sybil detection.

Definition 1 (Undirect Graph-based Sybil Detection). Suppose we are given an undirected social

network and a training dataset consisting of some labeled Sybils and labeled benign nodes. Undirect

graph-based Sybil detection is to predict the label of each unlabeled node by leveraging the graph

structure of the undirected social network.
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3.2.2 Design Goals

1) Leveraging both labeled benign users and Sybils: Social network service providers

often have a set of labeled benign users and labeled Sybils. For instance, verified users on Twitter

or Facebook can be treated as labeled benign users; users spreading spam or malware can be

treated as labeled Sybils, which can be obtained through manual inspection Cao et al. (2012) or

crowdsourcing Wang et al. (2013). Our method should be able to leverage both labeled benign

users and labeled Sybils to enhance detection accuracy.

2) Robust to label noise: A given label of a user is noisy if it does not match the user’s true

label. Labeled users may have noisy labels. For instance, an adversary could compromise a labeled

benign user or make a Sybil whitelisted as a benign user. In addition, labels obtained through

manual inspection, especially crowdsourcing, often contain noises due to human mistakes Wang

et al. (2013). We target a method that is robust to a minority fraction of incorrect labels.

3) Scalable: Real-world social networks often have hundreds of millions of users and edges.

Therefore, our method should be scalable and easily parallelizable.

4) Convergent: Existing methods and our method are iterative methods. Convergence makes it

easy to determine when to stop an iterative method. It is hard to set the best number of iterations

for an iterative method that is not convergent. Therefore, our method should be convergent.

5) Theoretical guarantee: Our method should have a theoretical guarantee on the number of

Sybils that can be falsely accepted into a social network. This theoretical guarantee is important for

security-critical applications that leverage social networks, e.g., social network based Sybil defense

in peer-to-peer and distributed systems Yu et al. (2006), and social network based anonymous

communications Danezis et al. (2010).

Existing RW-based SybilGuard Yu et al. (2006) and SybilLimit Yu et al. (2008) do not satisfy

1), 2), and 3); SybilInfer Danezis and Mittal (2009) only satisfies the requirement 4); SybilRank Cao

et al. (2012) and Íntegro Boshmaf et al. (2015) do not satisfy 1) and 2); CIA Yang et al. (2012) does

not satisfy 1), 2), and 5). Existing LBP-based SybilBelief Gong et al. (2014a) and SybilFuse Gao

et al. (2018) do not satisfy 3), 4), and 5).
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Benign Region Sybil Region

Attack edges

Figure 3.1 Benign region, Sybil region, and attack edges.

3.2.3 Threat Model

We call the subgraph containing all benign nodes and edges between them the benign region,

and call the subgraph containing all Sybil nodes and edges between them the Sybil region. Edges

between the two regions are called attack edges. Figure 3.1 illustrates these concepts.

One basic assumption under structure-based Sybil detection methods is that the benign region

and the Sybil region are sparsely connected (i.e., the number of attack edges is relatively small),

compared with the edges among the two regions. In other words, most benign users would not

establish trust relationships with Sybils. We note that this assumption is equivalent to requiring

that the social network follows homophily, i.e., two linked nodes share the same label with a high

probability. For an extreme example, if the benign region and the Sybil region are separated from

each other, then the social network has a perfect homophily, i.e., every two linked nodes have

the same label. Note that, it is of great importance to obtain social networks that satisfy this

assumption, otherwise the detection accuracies of collective classification methods are limited. For

instance, Yang et al. Yang et al. (2014) showed that RenRen friendship social network does not

satisfy this assumption, and thus the performance of collective classification methods are unsatis-

factory. However, Cao et al. Cao et al. (2012) found that Tuenti, the largest online social network

in Spain, satisfies the homophily assumption, and thus SybilRank can detect a large amount of

Sybils in Tuenti.
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Generally speaking, there are two ways for service providers to construct a social network that

satisfies homophily. One way is to approximately obtain trust relationships between users by looking

into user interactions Wilson et al. (2009), predicting tie strength Gilbert and Karahalios (2009),

asking users to rate their social contacts Wei et al. (2012), etc. The other way is to preprocess the

network structure so that collective classification methods are suitable to be applied. Specifically,

analysts could detect and remove compromised benign nodes (e.g., front peers) Wang and Nakao

(2010), or employ feature-based classifier to filter Sybils, so as to decrease the number of attack

edges and enhance the homophily. For instance, Alvisi et al. Alvisi et al. (2013) showed that if

the attack edges are established randomly, simple feature-based classifiers are sufficient to enforce

Sybils to be suitable for structure-based Sybil detection. We note that the reason why the RenRen

friendship social network did not satisfy homophily in the study of Yang et al. is that RenRen even

didn’t deploy simple feature-based classifiers at that time Yang et al. (2014).

Formally, we measure homophily as the fraction of edges in the social network that are not attack

edges. For the same benign region and Sybil region, more attack edges indicate weaker homophily.

As we will demonstrate in our empirical evaluations, our SybilSCAR can tolerate weaker homophily

than existing methods.

When analyzing the theoretical bound on the falsely accepted Sybils, SybilSCAR further as-

sumes that the iterative process of SybilSCAR converges fast in the benign region, which is similar

to the fast mixing assumption of RW-based methods.

3.3 Design of SybilSCAR

Under our local rule-based framework in Chapter 2, we know that designing a new Sybil de-

tection method is reduced to designing a new local rule. Therefore, we aim to design a novel local

rule in this Section. Then, we describe how we design SybilSCAR based on the new local rule.
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3.3.1 Our New Local Rule

We aim to design a local rule that integrates the advantages of both RW-based and LBP-

based local rules, while overcoming their limitations. Roughly speaking, our idea is to leverage the

multiplicativeness like LBP-based local rule to be robust to label noise, while avoiding maintaining

neighbor influences to be as space and time efficient as RW-based local rule. Next, we show how

we model neighbor influences and combine neighbor influences with prior knowledge.

Neighbor influence: We denote wvu, which ranges from 0 to 1, as the homophily strength of

the edge (u, v). wuv > 0.5 means that u and v are in a homogeneous relationship, i.e., they tend

to share the same label; wuv < 0.5 means that u and v are in a heterogeneous relationship, i.e.,

they tend to have the opposite labels; and wuv = 0.5 means that u and v are not correlated. We

associate a binary random variable xu with a node u, where xu = 1 and xu = −1 mean that u

is a Sybil and benign node, respectively. We denote by fvu the neighbor influence from v to u,

where v is a neighbor of u. We model fvu as the influence v has on u’s label, given v’s status and

wvu. Specifically, fvu > 0.5 means that v has a positive influence on u (i.e., v tends to make u to

be positive); fvu < 0.5 means that v has a negative influence on u (i.e., v tends to make u to be

negative); fvu < 0.5 means that v has no influence on u (i.e., v cannot decide us label).

Based on the homophily property, fvu should meet the following constraints:

pv = 0.5 or wvu = 0.5 =⇒ fvu = 0.5 (3.1)

pv > 0.5 and wvu > 0.5 =⇒ fvu > 0.5 (3.2)

pv < 0.5 and wvu > 0.5 =⇒ fvu < 0.5 (3.3)

pv > 0.5 and wvu < 0.5 =⇒ fvu < 0.5 (3.4)

pv < 0.5 and wvu < 0.5 =⇒ fvu > 0.5, (3.5)

where Equation 3.1 means that we cannot learn anything about u’s label if v’s label is undecidable

(i.e., pv = 0.5) or u and v are uncorrelated (i.e., wvu = 0.5); Equations 3.2 and 3.3 mean that u

and v tend to share the same label if they are in a homogeneous relationship; and Equations 3.4

and 3.5 mean that u and v tend to have opposite labels if they are in a heterogeneous relationship.



www.manaraa.com

20

To satisfy all the above constraints in Equations 3.1-3.5, we model fvu as follows:

fvu = pvwvu + (1− pv)(1− wvu). (3.6)

We can verify that fvu in Equation 3.6 indeed satisfies the above constraints. Another way to

interpret our model of fvu is that wvu is the probability that u and v have the same label and fvu

is the probability that u is a Sybil conditioned on wvu and pv. In our model, it is straightforward

to compute a neighbor influence fvu.

Combining neighbor influences with prior: In our local rule, a node’s posterior probability of

being Sybil is updated by combining its neighbor influences with its prior probability of being Sybil.

In order to tolerate label noise, we leverage the multiplicative local rule in LBP-based methods.

Specifically, we have:

pu =
qu
∏

v∈Γu
fvu

qu
∏

v∈Γu
fvu + (1− qu)

∏
v∈Γu

(1− fvu)
. (3.7)

However, methods that iteratively apply the above multiplicative local rule to every user are not

guaranteed to converge. Therefore we further linearize Equation 3.7. We first define two concepts

residual variable and residual vector.

Definition 2 (Residual Variable and Vector). We define the residual of a variable y as ŷ = y−0.5;

and we define the residual vector ŷ of y as ŷ = [y1 − 0.5, y2 − 0.5, · · · ].

With above definition, we denote ŵvu as the residual homophily strength. Moreover, by substi-

tuting variables in Equation 3.6 with their corresponding residuals, we have the residual neighbor

influence f̂vu as follows:

f̂vu = 2p̂vŵvu. (3.8)

Based on the approximations ln(1 + x) ≈ x and ln(1 − x) ≈ −x when x is small, we have the

following theorem, which linearizes Equation 3.7.

Theorem 3. The residual posterior probability of being Sybil for a node u can be linearized as:

p̂u = q̂u +
∑

v∈Γ(u)

f̂vu. (3.9)
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Proof. See Appendix .

By combining Equation 4.16 and Equation .23, we obtain our new local rule as follows:

Our local rule: p̂u = q̂u + 2
∑

v∈Γ(u)

p̂vŵvu. (3.10)

3.3.2 SybilSCAR Algorithm

Our SybilSCAR iteratively applies our local rule to every node to compute the posterior prob-

abilities. Suppose we are given a set of labeled Sybils which we denote as Ls and a set of labeled

benign nodes which we denote as Lb. SybilSCAR first utilizes Ls and Lb to assign a prior probability

of being a Sybil for all nodes. Specifically,

qu =



0.5 + θ if u ∈ Ls

0.5− θ if u ∈ Lb

0.5 otherwise,

(3.11)

where θ > 0 indicates that we assign a higher prior probability of being a Sybil to labeled Sybils.

Considering that the labels might have noise, we will set θ to be smaller than 0.5. In practice, these

prior probabilities can also be obtained from feature-based methods. Specifically, for each user we

can leverage a binary classifier, trained using user’s local features, to produce the probability of

being a Sybil, which can then be treated as the user’s prior probability. With such prior proba-

bilities, SybilSCAR iteratively applies our local rule in Equation 3.10 to update residual posterior

probabilities of all nodes.

Representing SybilSCAR as a matrix form: For convenience, we denote by a vector q the

prior probability of being a Sybil for all nodes, i.e., q = [q1; q2; · · · ; q|V |]. Similarly, we denote by

a vector p the posterior probability of all nodes, i.e., p = [p1; p2; · · · ; p|V |]. Moreover, we denote

q̂ and p̂ as the residual prior probability vector and residual posterior probability vector of all

nodes, respectively. We denote A ∈ R|V |×|V | as the adjacency matrix of the social graph, where

the uth row represents the neighbors of u. Formally, if there exists an edge (u, v) between nodes

u and v, then the entry Auv = Avu = 1, otherwise Auv = Avu = 0. Moreover, we denote Ŵ as
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the corresponding residual homophily strength matrix , where ŵvu = 0 if Avu = 0. With these

notations, we can represent our SybilSCAR as iteratively applying the following equation:

p̂(t) = q̂ + 2Ŵp̂(t−1), (3.12)

where p̂(t) is the residual posterior probability vector in the tth iteration. Initially, we set p̂(0) = q̂.

We stop running SybilSCAR when the relative errors of residual posterior probabilities between

two consecutive iterations is smaller than some threshold δ or it reaches the predefined number of

maximum iterations T . After SybilSCAR halts, we predict u to be a Sybil if pu > 0.5, otherwise

we predict u to be benign.

In this paper, we consider the following two cases for the homophily strength Ŵ. Although we

study these two settings, we believe that learning the homophily strength for each edge would be

a valuable future work.

SybilSCAR-C: In this variant, we use a constant homophily strength for all edges, i.e., ŵvu = ŵ.

SybilSCAR-D: In this variant, we use a degree-normalized homophily strength for each edge, i.e.,

ŵvu = 1
2du

, where du is the degree of node u. The intuition is that when a node has many neighbors,

each neighbor has a small influence on the node. In this variant, a node’s residual posterior

probability is the sum of its residual prior probability and the average residual posterior probability

of its neighbors. We note that SybilSCAR-D essentially uses the RW-based neighbor influence

proposed by SybilWalk Jia et al. (2017a). The differences with SybilWalk include 1) SybilWalk

resets the residual posterior probabilities of labeled nodes to their residual prior probabilities in

each iteration, and 2) SybilWalk does not consider prior probabilities of unlabeled nodes.

3.4 Theoretical Analysis

We first analyze the convergence condition of SybilSCAR. Then we analyze its peformance

bound. Finally, we analyze its computational complexity.

3.4.1 Convergence Condition

We analyze the condition when SybilSCAR converges.



www.manaraa.com

23

Lemma 4 (Sufficient and Necessary Convergence Condition for a Linear System Saad (2003)).

Suppose we are given an iterative linear process: y(t) ← c + My(t−1). The linear process converges

with any initial choice y(0) if and only if the spectral radius1 of M is smaller than 1, i.e., ρ(M) < 1.

Proof. See Saad (2003).

Based on Equation 4.17 and Lemma 4, we are able to analyze the convergence condition of

SybilSCAR.

Theorem 5 (Sufficient and Necessary Convergence Condition of SybilSCAR). The sufficient and

necessary condition that makes SybilSCAR converge is equivalent to

ρ(Ŵ) <
1

2
. (3.13)

Proof. By directly using Lemma 4 in Equation 4.17.

Theorem 5 provides a strong sufficient and necessary convergence condition. However, in prac-

tice using Theorem 5 is computationally expensive, as it involves computing the largest eigen-

value with respect to spectral radius of Ŵ. Hence, we instead derive a sufficient condition for

SybilSCAR’s convergence, which enables us to set ŵ with cheap computation. Specifically, our suf-

ficient condition is based on the fact that any norm is an upper bound of the spectral radius Derzko

and Pfeffer (1965), i.e., ρ(M) ≤ ‖M‖, where ‖ · ‖ indicates some matrix norm. In particular, we

use the induced l∞ matrix norm ‖ · ‖∞ 2. In this way, our sufficient condition for convergence is as

follows:

Theorem 6 (Sufficient Convergence Condition of SybilSCAR). A sufficient condition that makes

SybilSCAR converge is

‖Ŵ‖∞ <
1

2
. (3.14)

Proof. As ρ(Ŵ) ≤ ‖Ŵ‖∞, we achieve the sufficient condition by enforcing 2‖Ŵ‖∞ < 1, and thus

‖Ŵ‖∞ < 1
2 .

1The spectral radius of a square matrix is the maximum of the absolute values of its eigenvalues.
2‖M‖∞ = maxi

∑
j |Mij |, the maximum absolute row sum of the matrix.
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Table 3.1 Summary of theoretical guarantees of various collective classification methods. g is the number
of attack edges (sum of weights on the attack edge for Íntegro) and d(B)min is the minimum
node degree in the benign region. SybilGuard requires g = o(

√
|V |/ log |V |). “–” means the

corresponding bound is unknown.

Method #Accepted Sybils

SybilGuard Yu et al. (2006) O(g
√
|V | log |V |)

SybilLimit Yu et al. (2008) O(g log |V |)
SybilInfer Danezis and Mittal (2009) –

SybilRank Cao et al. (2012) O(g log |V |)
CIA Yang et al. (2012) –

Íntegro Boshmaf et al. (2015) O(g log |V |)
SybilBelief Gong et al. (2014a) –

SybilSCAR-D O( g log |V |
d(S) )

Theorem 6 provides a guideline for us to set ŵ, i.e., if ŵ is smaller than the inverse of 2

times of the maximum node degree, SybilSCAR converges. In practice, however, some nodes (e.g.,

celebrities) could have orders of magnitude bigger degrees than the others (e.g., ordinary people),

and such nodes make ŵ very small. In our experiments, we note that SybilSCAR can still converge

when replacing the maximum node degree with the average node degree.

Next, we derive the sufficient convergence condition for SybilSCAR-C and SybilSCAR-D, re-

spectively.

SybilSCAR-C: By applying Theorem 6, we have the sufficient condition for SybilSCAR-C to

converge as ŵ < 1
2‖A‖∞ = 1

2 maxu∈V du
. Note that our result provides a guideline to set ŵ, i.e., once

ŵ is smaller than the inverse of 2 times of the maximum node degree, SybilSCAR-C is guaranteed

to converge. In practice, however, some nodes (e.g., celebrities) could have orders of magnitude

bigger degrees than the others (e.g., ordinary people), and such nodes make ŵ very small. In our

experiments, we found that SybilSCAR-C can still converge when replacing the maximum node

degree with the average node degree.

SybilSCAR-D: In this case, the summation of each row of Ŵ has a fixed value 1
2 . Therefore,

‖W‖∞ = 1
2 . In practice, it is often ρ(Ŵ) < ‖Ŵ‖∞, which implies that ρ(Ŵ) < 1

2 . Therefore,

SybilSCAR-D is also convergent.
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3.4.2 Security Guarantee

Existing RW-based methods: Some existing RW-based Sybil detection methods Yu et al.

(2006, 2008); Danezis and Mittal (2009); Cao et al. (2012); Boshmaf et al. (2015) have theoretical

guarantees on the number of Sybils that are falsely accepted into a social network. For instance,

Table 3.1 shows the theoretical guarantees of some representative methods. These guarantees are

achieved based on the assumption that the benign region of the social network is fast-mixing Levin

et al. (2009). Roughly speaking, a graph is fast mixing if a random walk on the graph converges

to its stationary distribution in O(log |V |) iterations.

SybilSCAR: We will derive security guarantee for a “weaker” version of SybilSCAR-D. In

SybilSCAR-D, in each iteration, a node’s residual posterior probability is the sum of its resid-

ual prior probability and the average residual posterior probability of its neighbors. In other words,

in each iteration, a node’s prior probability is injected to influence the dynamics of nodes’ residual

posterior probabilities, which makes it harder to analyze the dynamics of residual posterior prob-

abilities. Therefore, we consider a weaker version of SybilSCAR-D, in which the nodes’ residual

prior probabilities are only injected in the initialization step. In other words, we have

p̂(0) = q̂ (3.15)

p̂(t+1)
u =

∑
v∈Γ(u)

p̂
(t)
v

du
. (3.16)

This version of SybilSCAR-D has a converged solution that every node has the same residual

posterior probability, i.e., p̂u = π for every node u is a solution for SybilSCAR-D. We have the

following security guarantee for this version of SybilSCAR-D:

Theorem 7. Suppose SybilSCAR-D only leverages the nodes’ prior probabilities in the initialization

step, residual posterior probabilities in the benign region converge in O(log |V |)) iterations (this is

similar to the fast mixing assumption of RW-based methods), the attacker randomly establishes g

attack edges, and we are only given some labeled benign nodes. Then, the total number of Sybils

whose residual posterior probabilities of being Sybil are lower than those of certain benign nodes is

bounded by O(g log |V |
d(S) ), where d(S) is the average node degree in the Sybil region.
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(a) ER model
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(b) PA model

Figure 3.2 Residual posterior probabilities of unlabeled benign nodes.

Proof. See Appendix .

Theorem 7 implies that when Sybils are more densely connected among themselves (i.e., the av-

erage degree d(S) is larger), it is easier for SybilSCAR to detect them. An intuitional explanation is

that, when the Sybil region is more dense, a larger proportion of the residual posterior probabilities

would be propagated among the Sybil region. Table 3.1 summarizes the theoretical performance

bound of existing collective classification methods. For SybilRank, Íntegro, and CIA, the metric

#accepted Sybils means the number of Sybils that are ranked lower than certain benign nodes. For

the rest of methods, #accepted Sybils means the number of Sybils that are classified as benign. As

we can see, our SybilSCAR achieves the tightest bound on the number of falsely accepted Sybils.

We note that deriving security guarantee for SybilSCAR-C is still an open challenge. However, as

we will demonstrate in our experiments, SybilSCAR-C outperforms SybilSCAR-D.

One key assumption of Theorem 7 is that residual posterior probabilities in the benign region

converge afterO(log |V |)) iterations. In other words, nodes in the benign region have similar residual

posterior probabilities after O(log |V |)) iterations. We validate this assumption via simulations.

Specifically, we synthesize a benign region and a Sybil region with 1,000 nodes and an average degree

of 40 via the Erdos–Renyi (ER) model Erdos and Rényi (1960) or the Preferential Attachment (PA)

model Barabási and Albert (1999); we randomly add 1,000 attack edges between the two regions;
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and we randomly label 10 benign nodes as the training set. Figure 3.2 shows the residual posterior

probabilities of unlabeled benign nodes after log |V | iterations. We observe that unlabeled benign

nodes have similar residual posterior probabilities.

3.4.3 Complexity Analysis

SybilSCAR (both SybilSCAR-C and SybilSCAR-D), state-of-the-art RW-based methods Mo-

haisen et al. (2011); Cao et al. (2012); Yang et al. (2012), and LBP-based method Gong et al.

(2014a) have the same space complexity, i.e., O(|E|), and their time complexity is O(t|E|), where t

is the number of iterations. Although SybilSCAR and SybilBelief (a LBP-based method) have the

same asymptotic space and time complexity, SybilSCAR is several times more space efficient and

significantly more time efficient than SybilBelief in practice, as we demonstrate in our experiments.

This is because SybilBelief needs to store neighbor influences (i.e., mvu(xu)) in both directions of

every edge and update them in every iteration.

Parallel implementation: SybilSCAR, state-of-the-art RW-based methods Mohaisen et al.

(2011); Cao et al. (2012); Yang et al. (2012), and LBP-based methods Gong et al. (2014a); Gao

et al. (2018) can be implemented in parallel. Specifically, we can divide nodes into groups, and a

thread or computer applies the corresponding local rule to a group of nodes iteratively.

3.5 Empirical Evaluations

We compare our SybilSCAR-C and SybilSCAR-D with SybilRank Cao et al. (2012), a state-

of-the-art RW-based method, and SybilBelief Gong et al. (2014a), a state-of-the-art LBP-based

method, in terms of accuracy, robustness to label noise, scalability, and convergence.

3.5.1 Dataset Description

We use 1) three real-world social networks with synthesized Sybils and 2) a large-scale Twitter

dataset with real Sybils for evaluations. Table 3.2 shows some basic statistics about our datasets.
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Table 3.2 Dataset statistics.

Dataset #Nodes #Edges Ave. degree

Facebook 4,039 88,234 43.69

Enron 33,696 180,811 10.73

Epinions 75,877 811,478 21.39

Twitter 41,652,230 1,202,513,046 57.74

Social networks with synthesized Sybils: We use a real social graph as the benign region

while synthesizing the Sybil region and adding attack edges between the two regions uniformly at

random. There are different ways to synthesize the Sybil region. For instance, we can use a network

model (e.g., Preferential Attachment (PA) model Barabási and Albert (1999)) to generate a Sybil

region. A Sybil region that is synthesized by a network model might be structurally very different

from the benign region, e.g., although the PA model can generate graphs that have similar degree

distribution with real social networks, the generated graphs have very small clustering coefficients,

which is very different from real-world social networks. Such structural difference could bias Sybil

detection results Alvisi et al. (2013). Moreover, a Sybil region synthesized by a network model

like PA does not have community structures, making it unrealistic. Therefore, following recent

studies Alvisi et al. (2013); Gong et al. (2014a), we consider a Sybil attack in which the Sybil

region is a replicate of the benign region. This way of synthesizing the Sybil region can avoid

the structural difference between the two regions, and both Sybil region and benign region have

complex community structures.

We utilize three social networks, i.e., Facebook (4,039 nodes and 88,234 edges), Enron (33,696

nodes and 180,811 edges), and Epinions (75,877 nodes and 811,478 edges), to represent differ-

ent application scenarios. We obtained these datasets from SNAP (http://snap.stanford.edu/

data/index.html). A node in Facebook dataset represents a user in Facebook, and two nodes

are connected if they are friends. A node in Enron dataset represents an email address, and an

edge between two nodes indicate at least one email was exchanged between the two corresponding

email addresses. Epinions is a who-trust-whom online social network of a general consumer review
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site Epinions.com. The nodes in Epinions denote members of the site. And in order to maintain

quality, Epinsons encourages users to specify which other users they trust, and uses the resulting

web of the trust to order the product reviews seem by each person. For each social network, we use

it as the benign region and replicate it as a Sybil region. Moreover, without otherwise mentioned,

we add 1,000 attack edges uniformly at random.

Twitter dataset with real Sybils: We obtained a snapshot of a large-scale Twitter follower-

followee network crawled by Kwak et al. Kwak et al. (2010). We transformed the follower-followee

network into an undirected one via keeping an edge between two users if there are at least one

directed edge between them. The undirected Twitter graph has 41,652,230 nodes and 1,202,513,046

edges, with an average degree of 57.74. To perform evaluation, we need ground truth labels of the

users. Since the Twitter network includes users’ Twitter IDs, we wrote a crawler to visit each

user’s profile using Twitter’s API, which told us the status (i.e., active, suspended, or deleted) of

each user. We found that 205,355 users were suspended by Twitter and we treated them as Sybils;

36,156,909 users were still active and we treated them as benign users. The remaining 5,289,966

users were deleted. As deleted users could be deleted by Twitter or by users themselves, we could

not distinguish the two cases without accessing to Twitter’s internal data. Therefore, we treat

them as unlabeled users. The average number of attack edges per Sybil is 181.55. Therefore, the

Twitter network has a very weak homophily. Note that the number of benign users and the number

of Sybils are very unbalanced, i.e., the number of labeled benign users is 176 times larger than the

number of labeled Sybils.

Training and testing sets: For a social network with synthesized Sybils, we select 200 nodes

uniformly at random and use them as a training dataset. For the Twitter dataset, we select 500,000

nodes uniformly at random and use them as a training dataset. The remaining benign and Sybil

nodes are used as testing data.
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3.5.2 Compared Methods

We compare SybilSCAR-C and SybilSCAR-D with SybilRank Cao et al. (2012), a state-of-the-

art RW-based method, and SybilBelief Gong et al. (2014a), a state-of-the-art LBP-based method.

In addition, we use random guessing as a baseline.

For SybilSCAR-C and SybilSCAR-D, we set θ = 0.1 to consider possible label noises, i.e., we

assign a prior probability 0.6, 0.4, and 0.5 to labeled Sybils, labeled benign users, and unlabeled

nodes, respectively. We set δ = 10−3 and T = 20. Considering different average degrees of

Facebook, Enron, Epinions, and Twitter, we set ŵ = 0.01, 0.04, 0.02, and 0.01 for SybilSCAR-C,

respectively. We set the parameters of SybilRank and SybilBelief according to their papers. For

instance, for SybilBelief, the edge weight is set to be 0.9 for all edges; SybilRank requires early

termination, and we set the number of iterations as dlog(|V |)e.

We implemented SybilRank, SybilSCAR-C, and SybilSCAR-D in C++. We obtained a basic

implementation of SybilBelief (in C++) from its authors and optimized the implementation. We

performed all experiments on a Linux machine with 16GB memory and 8 cores.

3.5.3 Results on Social Networks with Synthesized Sybils

Viswanath et al. (2010) demonstrated that Sybil detection methods can be treated as ranking

mechanisms, and they can be evaluated using Area Under the Receiver Operating Characteristic

Curve (AUC). Therefore, we adopt AUC to evaluate ranking accuracy. Suppose we rank nodes

with respect to their posterior reputation/probability of being a Sybil in a descending order. AUC

is the probability that a randomly selected Sybil ranks higher than a randomly selected benign

node. Note that random guessing, which ranks all nodes uniformly at random, has an AUC of 0.5.

Figure 3.3 shows AUCs of the compared methods as we increase the number of attack edges from

1,000 to 100,000. We have three observations. First, when a social network has strong homophily,

i.e., the number of attack edges is small, all the compared methods achieve very high AUCs. For

instance, SybilRank, SybilBelief, SybilSCAR-C, and SybilSCAR-D all achieve AUCs that are close

to 1 when the number of attack edges is less than 1,000. Second, SybilSCAR-C, SybilSCAR-
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Figure 3.3 AUCs of compared methods as the number of attack edges becomes large.

SybilSCAR-C and SybilSCAR-D are substantially more accurate than Sybil-

Rank, and SybilSCAR-C is slightly more accurate than SybilBelief and

SybilSCAR-D, when the number of attack edges is large.

D, and SybilBelief are substantially more accurate than SybilRank when the number of attack

edges becomes large, i.e., the social networks have weak homophily. A possible reason is that

SybilSCAR-C, SybilSCAR-D, and SybilBelief can leverage both labeled benign users and labeled

Sybils in the training dataset. Third, SybilSCAR-C achieves slightly larger AUCs than SybilBelief

and SybilSCAR-D. Compared with SybilBelief, SybilSCAR-C uses a new neighbor influence by

directly modeling the homophily property of the social network. Compared with SybilSCAR-D,

SybilSCAR-C uses a constant weight for all edges, which may make the labeled nodes have larger

influence to their neighbors.

3.5.4 Results on the Large-scale Twitter Dataset

The AUCs of SybilRank, SybilBelief, SybilSCAR-D, and SybilSCAR-C are 0.37, 0.76, 0.77, and

0.80, respectively. SybilRank performs worse than random guessing. SybilSCAR-C performs better

than SybilSCAR-D, which is comparable with SybilBelief. These results are consistent with those in

social networks with synthesized Sybils, because the number of attack edges in the Twitter dataset

is very large. We note that these AUCs are obtained via a balanced training dataset. Specifically,

among the 500,000 nodes in the training dataset, benign nodes are much more than Sybils; we

subsample some benign nodes such that we have the same number of benign nodes and Sybils,
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Figure 3.4 Fraction of Sybils in top ranked intervals on the Twitter dataset. SybilSCAR-C

performs better than SybilBelief and SybilSCAR-D, while SybilSCAR-D and

SybilBelief perform much better than SybilRank.

and we use them as a balanced training dataset. We found that all the methods have very low

AUCs (worse than random guessing) if we use the original unbalanced training dataset consisting

of the randomly sampled 500,000 nodes. It would be an interesting future work to theoretically

understand the impact of balanced/unbalanced training dataset on the accuracy of these methods.

In practice, the ranking of users can be used as a priority list to guide human workers to manually

inspect users and detect Sybils. In particular, inspecting users according to their rankings could

aid human workers to detect more Sybils than inspecting randomly picked users, within the same

amount of time. When ranking is used for such purpose, the number of Sybils in top-ranked

users is important because human workers can only inspect a limited number of users. AUC

measures the overall ranking performance, but it cannot tell Sybils among the top-ranked users.

Therefore, we further compare the considered methods using the fraction of Sybils in top-ranked

users. Specifically, for each method, we divide the top-10K users obtained by the method into

10 intervals, where each interval has 1K users. Figure 3.4 shows the fraction of Sybils in each

1K-user interval for the compared methods. First, SybilSCAR-C performs better than SybilBelief.

Specifically, the fraction of Sybils ranges from 74.2% to 99.3% in the top-10 1K-user intervals for
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Figure 3.5 AUCs of SybilRank, SybilBelief, SybilSCAR-D, and SybilSCAR-C vs. level of

label noise. SybilSCAR-C is slightly better than SybilSCAR-D and SybilBelief,

while they are much more robust to label noise than SybilRank. Note that

SybilBelief and SybilSCAR-C overlap in (a).

SybilSCAR-C, while the range is from 35.0% to 97.4% for SybilBelief. Second, SybilSCAR-C and

SybilBelief outperform SybilSCAR-D, which demonstrates that the predefined constant edge weight

is more informative than degree-normalized edge weight for ranking Sybils. Third, SybilRank is

close to random guessing.

3.5.5 Robustness to label noise

In practice, a training dataset might have noises, i.e., some labeled benign users are actually

Sybils and some labeled Sybils are actually benign. Such noises could be introduced by human

mistakes Wang et al. (2013). Thus, one natural question is how label noise impacts the accuracy

of detection methods.

For a given level of noise τ%, we randomly choose τ% of labeled Sybils in the training dataset

and mislabel them as benign users; and we also sample τ% of labeled benign users in the training

dataset and mislabel them as Sybils. We vary τ% from 10% to 50% with a step size of 10%. Note

that we didn’t perform experiments for τ% > 50% as all these methods cannot detect Sybils when a

majority of labels are incorrect. Figure 3.5 shows the AUCs of SybilRank, SybilBelief, SybilSCAR-

C, and SybilSCAR-D on Facebook (note that we have similar results on Enron and Epinions, and
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thus omit them for simplicity) and Twitter datasets against different levels of label noises. We

observe that 1) SybilSCAR-C has the best robustness against label noise; 2) SybilBelief is slightly

more robust than SybilSCAR-D to label noise; 3) SybilSCAR-C, SybilSCAR-D, and SybilBelief are

more robust to label noise than SybilRank. For instance, on the Facebook dataset, SybilSCAR-C

and SybilBelief can tolerate label noise up to 40%, SybilSCAR-D can tolerate label noise up to

30%, while SybilRank performs worse than random guessing when label noise is higher than 20%.

We believe it is an interesting future work to theoretically understand the robustness to label

noise of different methods. In the following, we provide a possible explanation on why SybilSCAR-

C, SybilSCAR-D, and SybilBelief are more robust to label noise than SybilRank. When there are

label noises, some benign nodes are treated as Sybils. The edges between these nodes and the rest

of benign nodes become attack edges, while the original attack edges that connect with these nodes

become edges in the new Sybil region. Similarly, some Sybils are mislabeled as benign nodes. The

edges between these nodes and the rest of Sybils are treated as attack edges, while the original attack

edges that connect with these nodes become edges in the new benign region. Since we randomly

sample mislabeled nodes, the new attack edges are likely to be more than the original attack

edges that become edges within the new benign region or Sybil region. Therefore, SybilSCAR-C,

SybilSCAR-D, and SybilBelief outperform SybilRank, because they can tolerate a larger number

of attack edges. Moreover, when label noise is larger than a certain threshold (this threshold is

graph-dependent), the new attack edges are more than what SybilSCAR-C, SybilSCAR-D, and

SybilBelief can tolerate, and thus their performance degrades significantly.

3.5.6 Scalability

We evaluate scalability in terms of the peak memory and time used by each method. As

evaluating scalability requires social networks with varying number of edges, we choose synthesized

graphs with different number of edges. Note that our purpose here is not to concern about the

accuracy, which depends on the number of iterations of each method. Thus, to avoid the bias

introduced by the number of iterations, we run all methods with the same number of iterations.
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Figure 3.6 Space and time efficiency of SybilRank, SybilBelief, and SybilSCAR-C

(SybilSCAR-D has the same space and time efficiency with SybilSCAR-C), vs.

number of edges. SybilSCAR-C and SybilRank have almost the same space

and time efficiency, while SybilSCAR-C is several times more space efficient

and one order of magnitude more time efficient than SybilBelief.

Figure 3.6 exhibits the peak memory and time used by SybilRank, SybilBelief, and SybilSCAR-

C (SybilSCAR-D has the same complexity with SybilSCAR-C, and thus we omit its results for

simplicity) for different number of edges with 20 iterations. We observe that: 1) all methods have

linear space and time complexity, which is consistent with our theoretical analysis in Section 3.4.3;

2) SybilRank and SybilSCAR-C use almost the same space and time; 3) SybilSCAR-C requires a

few times less memory than SybilBelief and is one order of magnitude faster than SybilBelief. The

reason is that SybilBelief needs a large amount of resources to store and maintain the neighbor

influence on every edge. We note that we optimized the implementation of SybilBelief provided

by its authors, and our optimized version is one order of magnitude faster than the unoptimized

version. Using the unoptimized implementation, SybilSCAR is around two orders of magnitude

faster than SybilBelief, which was reported in Wang et al. (2017b).

3.5.7 Convergence

We define a relative error of residual posterior probability vectors of SybilSCAR-C (or SybilSCAR-

D) as ‖p̂
(t)−p̂(t−1)‖1
‖p̂(t)‖1

, where p̂(t) is the residual vector of posterior probability produced by SybilSCAR-
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Figure 3.7 Relative errors of SybilRank, SybilBelief, SybilSCAR-D, and SybilSCAR-C vs.

the number of iterations on Facebook with 1,000 attack edges. SybilRank,

SybilSCAR-D, and SybilSCAR-C can converge, but SybilBelief cannot.

C (or SybilSCAR-D) in the tth iteration. Similarly, we can define relative errors for SybilRank and

SybilBelief using their vectors of posterior reputation/probability. Figure 3.7 shows the relative

errors vs. the number of iterations on Facebook with 1,000 attack edges. We observe that 1)

SybilSCAR-C, SybilSCAR-D, and SybilRank converge after several iterations; and 2) the relative

errors of SybilBelief oscillate. SybilBelief does not converge because there exists many loops in

real-world social networks and LBP may oscillate on graphs with loops, as pointed out by the

author of LBP Pearl (1988).

3.5.8 Impact of the Parameter θ

The parameter θ is the residual prior probability of labeled nodes. Figure 3.8 shows the AUCs

of SybilSCAR-D and SybilSCAR-C for different θ and different levels of label noise, where the

dataset is Facebook. Note that θ should be in the range (0, 0.5]. Therefore, we explored the values

0.1, 0.2, 0.3, 0.4, and 0.5. We observe that both SybilSCAR-D and SybilSCAR-C are stable with

respect to the choice of θ.
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Figure 3.8 AUCs of (a) SybilSCAR-D and (b) SybilSCAR-C for different levels of label

noise and different values for the parameter θ.

3.6 Summary

In this chapter, we first design a novel local rule based on the local rule-based framework in

Chapter 2. Our local rule integrates advantages of existing RW-based and LBP-based methods,

while overcoming their limitations.

Then, we perform both theoretical and empirical evaluations. Theoretically, SybilSCAR has a

tighter asymptotical bound on the number of Sybils that are falsely accepted into the social network

than existing collective classification methods. Moreover, SybilSCAR can guarantee to converge.

Empirically, our experimental results on both synthesized Sybils and real-world Sybils demonstrate

that SybilSCAR is more accurate and more robust to label noise than SybilRank, while SybilSCAR

is more accurate and significantly more scalable than SybilBelief.
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CHAPTER 4. COLLECTIVE CLASSIFICATION ON DIRECTED GRAPHS

FOR SYBIL DETECTION IN SOCIAL NETWORKS

4.1 Introduction

Many methods Yu et al. (2006, 2008); Danezis and Mittal (2009); Viswanath et al. (2010);

Mohaisen et al. (2011); Cao et al. (2012); Boshmaf et al. (2015); Liu et al. (2016); Gong et al.

(2014a) assume undirected graphs, in which edges represent strong trust relationships between

users. However, many social networks are intrinsically directed. For instance, on Twitter, one

user can follow another user without being followed back. In a directed social network, we call an

edge unidirectional if the edge in the reverse direction does not exist, otherwise we call the edge

bidirectional.

To apply these undirected graph based methods, we need to transform a directed social network

to an undirected one, which oversimplifies the social structure, resulting in limited performance.

Specifically, there could be two ways to transform a directed social network to an undirected one.

One way is to keep an undirected edge between two users once they are connected by directed

edge(s). Sybils often aggressively link to many benign users Ghosh et al. (2012); Yang et al.

(2012), which well embeds Sybils among benign users and evades detection in this transformation.

Indeed, in our Twitter dataset, Sybils proactively follow a large number of benign users while

only a small fraction of them follow back. The other way is to keep an undirected edge between

two users only if they are connected via bidirectional edges. However, such transformation cannot

leverage unidirectional edges. These unidirectional edges could be very informative for a user’s

reputation. For instance, if many benign users follow a user on Twitter, then the user might also

be benign even if he/she does not follow back to those followers. To the best of our knowledge,

collective classification methods Gyöngyi et al. (2004); Yang et al. (2012) using directed graphs

are all based on random walks. They suffer from three limitations. First, they only leverage users’
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either incoming edges or outgoing edges, but not both. Second, they only leverage manually labeled

benign users Gyöngyi et al. (2004) or manually labeled Sybils Yang et al. (2012) (but not both)

when a training dataset is available. Third, they are not robust to noisy labels. A training dataset

often has noisy labels due to human mistakes Wang et al. (2013). These limitations make them

insufficient for real-world social networks.

Our work: We propose GANG, a new collective classification method using directed graphs, to

detect Sybils in social networks. In GANG, we associate a binary random variable with each user

to model its label, and then we design a novel pairwise Markov Random Field (pMRF) to model

the joint probability distribution of all these random variables based on the directed social graph.

Our pMRF incorporates unique characteristics of the Sybil detection problem. Specifically, we call

an edge (u, v) unidirectional if the edge (v, u) in the reverse direction does not exist, otherwise

we call the edge bidirectional. If two users are linked by bidirectional edges and have the same

label, then our pMRF produces a larger joint probability. However, suppose u and v are linked by

a unidirectional edge (u, v), e.g., on Twitter, this means that u follows v, but v does not follow

back to u. If u is Sybil or v is benign, then whether the unidirectional edge (u, v) exists or not

does not influence the joint probability under our pMRF, otherwise the edge (u, v) makes the joint

probability larger. This is because a Sybil can follow arbitrary users without being followed back,

while a benign user can be followed by arbitrary users without following them back.

In the basic version of GANG, given a training dataset, we use Loopy Belief Propagation

(LBP) Pearl (1988) to estimate the posterior probability distribution for each binary random vari-

able and use it to predict label of the corresponding user. However, the basic version has two

shortcomings: 1) it is not scalable enough because LBP needs to maintain messages on each edge,

and 2) it is not guaranteed to converge because LBP might oscillate on loopy graphs Pearl (1988).

Therefore, we further optimize GANG to address these shortcomings. Our optimizations include

eliminating message maintenance and approximating GANG by a concise matrix form. We also

derive the conditions for our optimized GANG to converge.
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We evaluate GANG and compare it with various existing directed methods using a large-scale

Twitter dataset (42M users and 1.5B directed edges) and a large-scale Sina Weibo dataset (3.5M

users and 653M directed edges). Both datasets have labeled Sybils and benign nodes. Our results

demonstrate that GANG substantially outperforms existing guilt-by-association methods. Via a

case study on Sina Weibo, we found that GANG can detect a large amount of Sybils that evaded Sina

Weibo’s detector. Moreover, we demonstrate that the optimized version of GANG is significantly

more efficient than its basic version.

In summary, our key contributions are as follows:

• We propose GANG to detect Sybils in social networks via guilt-by-association on directed

graphs. GANG leverages a novel pMRF that captures the unique characteristics of the Sybil

detection problem.

• We optimize GANG to make it scalable and convergent.

• We evaluate GANG and various existing guilt-by-association methods using a large-scale

Twitter dataset and a large-scale Sina Weibo dataset with labeled Sybils and labeled benign

users. Our results demonstrate that GANG significantly outperforms existing methods, and

that the optimized GANG is significantly more efficient than its basic version.

4.2 Problem Definition

4.2.1 Directed Graph-based Sybil Detection

Suppose we are given a directed social graph G = (V,E), where a node v ∈ V represents a user,

|V | is the number of users, and a directed edge (u, v) ∈ E indicates a certain relationship between

u and v. For instance, such relationship could be that u follows v on Twitter, u sends a friend

request to v on Facebook, or u accepts friend request from v on Facebook. Each node can be either

Sybil or benign. Sybils include spammers, fake users, and compromised users.

Definition 8 (Directed Graph-based Sybil Detection). Suppose we are given a directed social graph

and a training dataset consisting of labeled Sybils and labeled benign nodes. Directed Graph-based

Sybil detection is to predict the label of each remaining node in the social graph.
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4.2.2 Design Goals

1) Leveraging unidirectional edges: A large portion of edges in a directed social graph are

unidirectional. For instance, in our large-scale Twitter and Weibo social graphs, 36.2% and 25.4%

of edges are unidirectional, respectively. Our method should be able to leverage unidirectional

edges to enhance ranking performance.

2) Incorporating both labeled benign users and Sybils: When a manually labeled training

dataset is available, our method should be able to incorporate both labeled benign users and labeled

Sybils.

3) Robust to label noise: A given label of a user is noisy if it does not match the user’s true

label. A training dataset might have noisy labels due to human mistakes Wang et al. (2013) or

labeled benign users being compromised. We aim to be robust to a minority fraction of given labels

being noisy.

4) Scalable: Our method should be scalable to real-world social networks that have hundreds of

millions of users and billions of edges.

5) Convergent: If the method is an iterative algorithm, then the iterative process should be

convergent, making it easy to determine when to stop.

Existing methods only satisfy a subset of these design goals. SybilGuard Yu et al. (2006),

SybilLimit Yu et al. (2008), and SybilInfer Danezis and Mittal (2009) do not satisfy goals 1)-

4). SybilRank Cao et al. (2012) and Íntegro Boshmaf et al. (2015) do not satisfy goals 1)-3).

SybilBelief Gong et al. (2014a) does not satisfy goals 1), 4), and 5). CIA Yang et al. (2012) and

TrustRank Gyöngyi et al. (2004) do not satisfy goals 2) and 3).

4.3 Design of GANG

We introduce a basic version of our GANG. Specifically, we first introduce intuitions on which

GANG is based. Second, we design a novel customized pMRF to capture the intuitions. Third, we

discuss how we leverage the pMRF to detect Sybils.
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Figure 4.1 Illustration of three types of neighbors. v1, v2, and v3 are bidirectional, unidi-

rectional incoming, and unidirectional outgoing neighbors of u, respectively.

Notations: We call an edge (u, v) unidirectional if the edge (v, u) does not exist. We denote by

E1 unidirectional edges in the graph, e.g., E1 = {(u, v)|(u, v) ∈ E and (v, u) /∈ E}. We call an edge

(u, v) bidirectional if the edge (v, u) also exists. We denote by E2 bidirectional edges in the graph,

i.e., E2 = {(u, v)|u < v and (u, v) ∈ E and (v, u) ∈ E}. Note that, in our definition, either (u, v)

or (v, u) (but not both) appears in E2 if they are bidirectional edges.

We denote by Γb(u), Γi(u), and Γo(u) the set of bidirectional, unidirectional incoming, unidi-

rectional outgoing neighbors of a user u. Fig. 4.1 illustrates the three types of neighbors. Formally,

we have Γb(u)={v|(v, u) ∈ E and (u, v) ∈ E}, Γi(u) = {v|(v, u) ∈ E and (u, v) /∈ E}, and Γo(u)

= {v|(u, v) ∈ E and (v, u) /∈ E}. Furthermore, we denote by Γ(u) the set of all neighbors of u,

i.e., Γ(u)=Γb(u)∪ Γi(u)∪ Γo(u). Please note that unidirectional incoming neighbors are different

from conventional incoming neighbors, and unidirectional outgoing neighbors are different from

conventional outgoing neighbors, because conventional incoming neighbors and outgoing neighbors

also include bidirectional neighbors.

4.3.1 Intuitions

We associate a binary random variable xu with each user u in the graph, where xu = 1 and

xu = −1 mean that u is Sybil and benign, respectively. We denote by x̄u the observed label of a

node u. We denote by xS the set of binary random variables associated with the set of vertices in
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S, and we denote by x̄S the observed labels of these random variables. In particular, x̄Γ(u) are the

observed labels of u’s neighbors.

Different types of neighbors have different influences on a node u’s label. Specifically, we have

the following intuitions:

• Intuition I: Bidirectional neighbors. If a neighbor v is a bidirectional neighbor of u, then

u tends to have the same label with v, e.g., both u and v tend to be Sybil. This property

is known as homophily. social networks with Sybil and benign nodes have the homophily

property because benign nodes will not link to Sybils with bidirectional edges in most cases.

Given the labels of u’s bidirectional neighbors, we model the probability that u is Sybil as

the following sigmoid function:

Pr(xu = 1|x̄Γb(u)) =
1

1 + exp(−∑v∈Γb(u) Jvux̄v)
, (4.1)

where Jvu is the coupling strength of the edge (v, u), and we set Jvu=Juv for bidirectional

edges. Moreover, we set Jvu > 0 to model the homophily property. In our model, u has a

higher probability to be Sybil if more of its bidirectional neighbors are Sybils. We note that

using a sigmoid function allows us to capture these intuitions using a customized pMRF.

• Intuition II: Unidirectional incoming neighbors. If v is an unidirectional incoming

neighbor, then v is not informative for u’s label if v is Sybil. This is because a Sybil can

link to many other nodes (Sybil or benign) in social networks. For instance, in Twitter, the

follower-followee network is a directed graph in which an edge (v, u) means that v follows u,

and a Sybil could follow many other Sybil or benign users. Therefore, being linked by a Sybil

does not mean the node is Sybil nor benign. However, when v is benign, u also tends to be

benign. We model this intuition as follows:

Pr(xu = 1|x̄Γi(u)) =
1

1 + exp(−1
2

∑
v∈Γi(u) Jvu(x̄v − 1))

, (4.2)

where Jvu > 0. In our model, unidirectional incoming neighbors, which are known to be

Sybil, do not influence u’s label; and u is less likely to be Sybil if more of its unidirectional

incoming neighbors are known to be benign.
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• Intuition III: Unidirectional outgoing neighbors. If v is an unidirectional outgoing

neighbor, then v is not informative for u’s label if v is a benign node. This is because any

node can link to a benign node in social networks. For instance, in the Twitter example, any

node can follow a benign user. However, if v is Sybil, then u also tends to be Sybil because

a benign user rarely follows a Sybil. We model this intuition as follows:

Pr(xu = 1|x̄Γo(u)) =
1

1 + exp(−1
2

∑
v∈Γo(u) Juv(x̄v + 1))

, (4.3)

where Jvu > 0. In our model, unidirectional outgoing neighbors, which are known to be

benign, do not influence u’s label; and u is more likely to be Sybil if more of its unidirectional

outgoing neighbors are known to be Sybil.

Modeling prior knowledge about u’s label: We could have some prior knowledge about u’s

label, which is independent with u’s neighbors’ labels. We model the prior knowledge as:

Pr(xu = 1) =
1

1 + exp(−hu)
, (4.4)

where hu > 0 and hu < 0 indicate that u tends to be Sybil or benign according to its prior knowledge,

respectively; and hu = 0 means that u’s prior knowledge is not informative for determining u’s

label. Such prior knowledge can be obtained through a labeled training dataset (See Section 4.3.3).

Moreover, in practice, we can learn the parameters hu for each node through feature-based methods,

which analyze local graph structure, content, and behaviors.

Unifying neighbor influences and prior knowledge: Suppose we already know the labels of

u’s neighbors and its prior knowledge, we model the probability that u is Sybil as follows:

Pr(xu = 1|x̄Γ(u)) =
1

1 + exp(−Ib(u)− Ii(u)− Io(u)− hu)
, (4.5)

where

• Ib(u) =
∑

v∈Γb(u) Jvux̄v is the total influence of bidirectional neighbors;

• Ii(u) = 1
2

∑
v∈Γi(u) Jvu(x̄v − 1) is the total influence of unidirectional incoming neighbors;

• Io(u) = 1
2

∑
v∈Γo(u) Juv(x̄v + 1) is the total influence of unidirectional outgoing neighbors;

• hu models the prior knowledge about u.
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4.3.2 A Novel Pairwise Markov Random Field

We introduce a novel pairwise Markov Random Field (pMRF) to capture our intuitions in

Equation 4.5. A pMRF models the joint probability distribution of all binary random variables xu

for all u ∈ V . We denote by xV the set of all binary random variables. Our proposed pMRF is as

follows:

H(xV ) =− 1

2

∑
(u,v)∈E2

Juvxuxv −
1

4

∑
(u,v)∈E1

Juv(xu − 1)(xv + 1)− 1

2

∑
u∈V

huxu, (4.6)

Pr(xV ) ∝ exp(−H(xV )) (4.7)

where H(xV ) is conventionally called energy function. Either (u, v) or (v, u), but not both, appears

in H(xV ) when (u, v) is a bidirectional edge. We can verify that our pMRF satisfies Equation 4.5.

In particular, when u’s neighbors’ states are observed, the conditional probability that u is Sybil is

given by Equation 4.5. Note that an unidirectional edge (u, v) does not influence the value of our

energy function nor the joint probability if u is a Sybil or v is a benign node. This is because of

our Intuition II and III.

Next, we will transform Equation 4.7 into a product of a set of node potentials and edge poten-

tials, which is a standard form of a pMRF. This form makes it easier for us to present our method

to infer states of nodes. Specifically, we define a node potential φu(xu) for a node u as

φu(xu) :=


qu if xu = 1

1− qu if xu = −1,

where qu := (1+exp{−hu})−1, which is the prior probability of u being Sybil. For a bidirectional

edge (u, v), we define its edge potential ϕuv(xu, xv) as:

ϕuv(xu, xv) :=


wuv if xuxv = 1

1− wuv if xuxv = −1.

For an unidirectional edge, we define its edge potential as:

ϕuv(xu, xv) :=


wuv if xu = 1 or xv = −1

1− wuv otherwise.
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wuv :=(1 +exp{−Juv})−1 in both definitions of edge potentials. wuv > 0.5 captures the homophily

property. In our definitions, wuv can be interpreted as the probability that two nodes have the

same label when they are linked via bidirectional edges. In this work, we set wuv = w > 0.5 for

all edges, and we call w homophily strength. However, learning the parameters wuv would be a

valuable future work.

With node potentials and edge potentials, we can rewrite Equation 4.7 as follows:

Pr(xV ) =
1

Z

∏
v∈V

φv(xv)
∏

(u,v)∈E1∪E2

ϕuv(xu, xv), (4.8)

where Z =
∑

xV

∏
v∈V φv(xv)

∏
(u,v)∈E1∪E2

ϕuv(xu, xv) is conventionally called the partition func-

tion and benignizes the probabilities. Note that either (u, v) or (v, u), but not both, appears in the

above equation if (u, v) is a bidirectional edge.

4.3.3 Detecting Sybils

We leverage the above pMRF to detect Sybils. Suppose we are given a set of labeled Sybils

denoted as Lf and a set of labeled benign nodes denoted as Ln. We set the parameter qu in node

potentials as follows:

qu =



0.5 + θ if u ∈ Lf

0.5− θ if u ∈ Ln

0.5 otherwise,

(4.9)

where 0 < θ ≤ 0.5. Then, we compute the posterior probability distribution of a node u, i.e.,

Pr(xu) =
∑

xV/u
Pr(xV ). For simplicity, we denote by pu the posterior probability that u is a

Sybil, i.e., pu = Pr(xu = 1). We predict u to be Sybil if pu > 0.5, otherwise we predict u to be

benign.

Computing posterior probability distribution using Loopy Belief Propagation (LBP): In

the basic version of GANG, we use LBP Pearl (1988) to estimate the posterior probability distribu-

tion Pr(xu). LBP iteratively passes messages between neighboring nodes in the graph. Specifically,
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the message m
(t)
vu(xu) sent from v to u in the tth iteration is

m(t)
vu(xu) =

∑
xv

φv(xv)ϕvu(xv, xu)
∏

k∈Γ(v)/u

m
(t−1)
kv (xv), (4.10)

where Γ(v)/u is the set of all neighbors of v, except the receiver node u. This encodes that each

node forwards a product over incoming messages of the last iteration and adapts this message to

the respective receiver based on the homophily strength with the receiver. LBP stops when the

changes of messages become negligible in two consecutive iterations (e.g., l1 distance of changes

becomes smaller than 10−3) or it reaches the predefined maximum number of iterations T . After

LBP halts, we estimate the posterior belief Pr(xu) as follows:

Pr(t)(xu) ∝ φu(xu)
∏

k∈Γ(u)

m
(t)
ku(xu), (4.11)

which is equivalent to

p(t)
u =

qu
∏

k∈Γ(u)m
(t)
ku

qu
∏

k∈Γ(u)m
(t)
ku + (1− qu)

∏
k∈Γ(u)(1−m

(t)
ku)

, (4.12)

where m
(t)
ku = m

(t)
ku(xu = 1) and 1−m(t)

ku = m
(t)
ku(xu = −1). Note that benignizing m

(t)
ku(xu) does not

affect the computation of posterior probability distribution of any node. Therefore, for simplicity,

we have benignized m
(t)
ku(xu) such that m

(t)
ku(xu = 1) + m

(t)
ku(xu = −1) = 1 in the above equation.

4.4 Optimizing GANG

The basic version of GANG has two shortcomings: 1) GANG is not scalable enough, and 2)

GANG is not guaranteed to converge. These shortcomings are caused by LBP which estimates the

posterior probability distribution for each node. Specifically, LBP is not scalable enough because

it maintains messages on each edge, and LBP might oscillate on loopy graphs Pearl (1988). In this

section, we optimize GANG to address these shortcomings.

4.4.1 Eliminating Message Maintenance

One of the major reasons why GANG is not scalable enough is that LBP maintains messages

on each edge. We observe that the key reason why LBP needs to maintain messages on edges is
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that when a node v prepares a message to its neighbor u, it needs to exclude the message that u

sends to v. Therefore, our first optimization step is to include the message that u sends to v when

v prepares its message for u. Formally, we modify Equation 4.10 as follows:

m(t)
vu(xu) =

∑
xv

φv(xv)ϕvu(xv, xu)
∏

k∈Γ(v)

m
(t−1)
kv (xv). (4.13)

Considering Equation 4.11, we have:

m(t)
vu(xu) ∝

∑
xv

ϕvu(xv, xu)Pr(t−1)(xv). (4.14)

Recall that we benignize m
(t)
vu(xu) such that m

(t)
vu(xu = 1) + m

(t)
vu(xu = −1) = 1, and we abbreviate

m
(t)
vu(xu = 1) as m

(t)
vu. With such benignization, our modified messages become

m(t)
vu =


0.5, if p

(t−1)
v > 0.5 and v ∈ Γi(u)

0.5, if p
(t−1)
v < 0.5 and v ∈ Γo(u)

p
(t−1)
v w + (1− p(t−1)

v )(1− w), otherwise.

(4.15)

With our modified messages, GANG does not need to store messages on edges and computing

posterior beliefs is much more scalable as we will demonstrate in our experiments.

4.4.2 Approximating GANG with a Matrix Form

GANG iteratively applies Equations 4.15 and 4.12 with our modified messages, which still

cannot guarantee convergence. The key reason is that Equation 4.12 combines messages from a

node’s neighbors in a nonlinear fashion. We make GANG converge via linearizing Equation 4.12.

The resulting optimized GANG can be represented in a concise matrix form.

We define the residual of a variable y as ŷ = y − 0.5; we define the residual vector ŷ of y as

ŷ = [y1−0.5, y2−0.5, · · · ]; and we define the residual matrix Ŷ of Y as each entry of Y substracting

0.5. With residual variables, we can represent the residual message m̂
(t)
vu in Lemma 9.
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Lemma 9 (Residual Messages). The residual message m̂
(t)
vu can be represented as follows:

m̂(t)
vu =


0 if p̂

(t−1)
v > 0 and v ∈ Γi(u)

0 if p̂
(t−1)
v < 0 and v ∈ Γo(u)

2p̂
(t−1)
v ŵ otherwise.

(4.16)

Proof. By substituting variables in Equation 4.15 with their residuals.

We denote by Ab ∈ R|V |×|V |, Ai ∈ R|V |×|V |, and Ao ∈ R|V |×|V | the bidirectional, unidirectional

incoming, and unidirectional outgoing adjacency matrices of the social graph, respectively. The

uth row of Ab, Ai, and Ao represents the bidirectional, unidirectional incoming, and unidirectional

outgoing neighbors of u. Formally, if there exists a bidirectional edge between u and v, then the

entry Ab,uv = Ab,vu = 1, otherwise, Ab,uv = Ab,vu = 0; if there exists an unidirectional edge from

u to v, then Ao,uv = 1 and Ai,vu = 1. We define p(t) = [p
(t)
1 ; p

(t)
2 ; · · · ; p

(t)
|V |] as the column vector

of all nodes’ posterior beliefs in the tth iteration, and p̂(t) as its residual vector. Similarly, we

denote by q = [q1; q2; · · · ; q|V |] the column vector of all nodes’ prior beliefs, and by q̂ its residual

vector. Let P̂(t) ∈ R|V |×|V | be a matrix consisting of |V | repeats of the column vector p̂(t), i.e.,

P̂(t) = [p̂(t), p̂(t), · · · ]. With these notations, we have the following theorem, which states that

GANG can be approximated as a concise matrix form.

Theorem 10. We can approximate Equations 4.15 and 4.12 as the following equation:

A
′(t−1)
i = I(Ai ◦ P̂(t−1)T ),

A
′(t−1)
o = I(−Ao ◦ P̂(t−1)T ),

p̂(t) = q̂ + 2 · ŵ · (Ab + A
′(t−1)
i + A

′(t−1)
o ) · p̂(t−1),

(4.17)

where the operator ◦ represents element-wise product of two matrices; YT is the transpose of the

matrix Y; the indicator function I(Y) means that an entry is set to be 0 if the corresponding entry

of the matrix Y is non-negative, otherwise it is set to be 1.

Proof. See Appendix .
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Theorem 10 demonstrates that posterior beliefs can be iteratively solved by matrix operations

without explicitly modeling messages.

Computational complexity: We use sparse matrix representation to implement GANG. In each

iteration, GANG traverses each unidirectional edge twice (once for each node of the edge) and each

bidirectional edge once. Therefore, time complexity of GANG is O(2 · (|E1|+ |E2|) · t), where t is

the number of iterations. We note that the basic version of GANG has the same asymptotic time

complexity. However, the constants in their asymptotic representations are different, which results

in their significantly different scalabilities.

4.5 Convergence Analysis

We analyze the conditions when our optimized GANG converges. Suppose we are given an

iterative linear process: y(t) ← c + My(t−1). A basic result from linear systems Saad (2003) says

that the linear process converges with any initial condition y(0) if and only if the spectral radius of

M is smaller than 1, i.e., ρ(M) < 1. We use this basic result to analyze the convergence conditions

for our optimized GANG.

Theorem 11 (Sufficient Convergence Condition for Optimized GANG). Let ‖ · ‖1 stand for the

induced l1 norm of a matrix. The following inequality is a sufficient condition for our optimized

GANG to converge.

ŵ <
1

2‖Ab + Ai + Ao‖1
=

1

2 maxu∈V du
, (4.18)

where du = |Γu| is the degree of u.

Proof. See Appendix .

Theorem 11 provides an elegant way to guide us to set ŵ, i.e., once ŵ is smaller than the

inverse of 2 times of the maximum node degree, GANG is guaranteed to converge. In practice,

some nodes (e.g., celebrities) could have orders of magnitude bigger degrees than the others (e.g.,

ordinary people), and such nodes make ŵ very small. In our experiments, we find that GANG can

still converge when replacing the maximum node degree with the average node degree.
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Table 4.1 Dataset statistics.

Dataset Twitter Sina Weibo

#Nodes 41,652,230 3,538,487

#Edges 1,468,364,884 652,889,971

Ave. degree 71 369

4.6 Evaluations

4.6.1 Experimental Setup

Dataset description: We compare GANG with existing methods on two large-scale social graph

datasets with labeled Sybil and benign nodes.

First, we obtained a Twitter follower-followee graph with 41,652,230 users and 1,468,364,884

edges from Kwak et al. Kwak et al. (2010). In this graph, a directed edge (u, v) means that u follows

v. We obtained ground truth labels for each node from Wang et al. Wang et al. (2017b). Specifically,

205,355 users were suspended by Twitter and we treated them as Sybils; 36,156,909 users were active

and we treated them as benign users; and the remaining 5,289,966 users were deleted. As deleted

users could be deleted by Twitter or by users themselves, we could not distinguish the two cases

without accessing to Twitter’s internal data. Thus, we treat them as unlabeled users. We sample

500,000 labeled users uniformly at random as a training set and treat the remaining labeled users

as the testing set.

Second, we obtained a Sina Weibo dataset with 3,538,487 users and 652,889,971 directed edges

from Fu et al. Fu et al. (2017). Like Twitter, a directed edge (u, v) means that u follows v. Fu

et al. also manually labeled 2000 users sampled uniformly at random. Among them, 482 were

Sybils, 1,498 were benign users, and 20 were unknown users (we do not consider these users in our

experiments). We split the Sybil and benign users into two halves; one is treated as the training

set and the other is treated as the testing set. Table 4.1 shows some statistics of our datasets.
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Compared methods: We compare GANG with both undirected and directed graph based

methods. By default, we will use the optimized version of GANG.

1) Using undirected graphs. We consider the following undirected graph based methods: the well

known graph-based semi-supervised learning method (SSL) Zhu et al. (2003), SybilRank Cao et al.

(2012), SybilBelief Gong et al. (2014a), and SybilSCAR Wang et al. (2017b). SSL and SybilRank

are based on random walks and SybilBelief is based on pMRF. SybilSCAR unifies random walk

based methods and pMRF based methods as a local rule based framework. Moreover, under the

framework, SybilSCAR designs a new local rule which outperforms existing random walk and

pMRF based local rules. SSL, SybilBelief, and SybilSCAR can leverage both Sybils and benign

users in the training dataset, while SybilRank is only able to leverage labeled benign users. These

methods transform a directed graph into an undirected one via keeping an edge between two nodes if

they are connected via bidirectional edges. This is more robust than keeping both bidirectional and

unidirectional edges because Sybils can create arbitrary number of unidirectional edges with benign

nodes, making them well embedded among benign nodes. Since these methods require connected

graphs, we evaluate them on the largest connected component in the transformed undirected graph.

2) Using directed graphs. We consider the following directed graph based methods: TrustRank Gyöngyi

et al. (2004), DistrustRank Wu et al. (2006), CIA Yang et al. (2012), and CatchSync Jiang et al.

(2014). TrustRank, DistrustRank, and CIA are based on random walks, while CatchSync leverages

HITS Kleinberg (1999). TrustRank and DistrustRank were originally designed to detect Sybil web-

pages based on hyperlinks, but they can be applied to detect Sybils in social networks. TrustRank

leverages only labeled benign nodes in the training dataset; DistrustRank and CIA are essentially

the same, and they only leverage labeled Sybils; and CatchSync does not leverage the training

dataset.

Parameter setting: For GANG, we set θ = 0.4 to consider possible label noises, i.e., we assign

a prior probability of being Sybil 0.9, 0.1, and 0.5 to labeled Sybils, labeled benign nodes, and

unlabeled nodes, respectively; we set δ = 10−3; and we respectively set ŵ = 0.01 and ŵ = 0.001

on Twitter and Sina Weibo, considering their different average node degrees. For all other com-
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Table 4.2 AUCs of compared methods.

Methods Twitter Sina Weibo

Using SSL Zhu et al. (2003) 0.55 0.68

undirected SybilRank Cao et al. (2012) 0.57 0.61

graphs SybilBelief Gong et al. (2014a) 0.61 0.65

SybilSCAR Wang et al. (2017b) 0.64 0.68

TrustRank Gyöngyi et al. (2004) 0.60 0.66

Using DistrustRank Wu et al. (2006) 0.63 0.64

directed CIA Yang et al. (2012) 0.63 0.64

graphs CatchSync Jiang et al. (2014) 0.68 0.51

GANG 0.72 0.80

pared methods, we set their parameters according to the original papers. For instance, we set

the decay factor to be 0.85 for TrustRank Gyöngyi et al. (2004) as suggested by its authors. For

CatchSync Jiang et al. (2014), we set the parameter α = 3.

4.6.2 Ranking Results

Each compared method computes a score for each node. We rank the nodes in the testing

dataset using the scores such that Sybils are supposed to rank higher than benign nodes.

Overall ranking performance: We first use AUC to measure the overall ranking performance of

the compared methods. In our problem, AUC can be interpreted as the probability that a randomly

sampled Sybil is ranked higher than a randomly sampled benign node in the testing dataset. The

higher AUC, the better performance. Table 4.2 shows the AUCs of all compared methods on the

Twitter and Sina Weibo datasets. We observe that GANG consistently outperforms all compared

methods on both datasets. We note that CatchSync achieves a close AUC as GANG on the Twitter

dataset. However, CatchSync’s performance degrades substantially on the Sina Weibo dataset.

CatchSync relies on node degrees and properties of a node’s neighbors. Therefore, we suspect the

reason for CatchSync’s poor performance on Sina Weibo is that nodes in the Sina Weibo dataset

have larger average node degrees and their neighbors have more diverse properties.
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Figure 4.2 Fraction of Sybils in each top ranked interval on Twitter.

Sybils in top-ranked nodes: In practice, the ranking of nodes can be used as a priority list to

help social networks’ human workers manually inspect nodes and detect Sybils. Inspecting nodes

according to their rankings could aid human workers to detect more Sybils than inspecting nodes

picked uniformly at random, within the same amount of time. When ranking is used for such

purpose, the number of Sybils in top-ranked nodes is important because human workers can only

inspect a limited number of nodes.

AUC measures the overall ranking performance, but it cannot tell Sybils among the top-ranked

nodes. Therefore, we further compare the considered methods using the fraction of Sybils in top-

ranked nodes. In particular, we divide the top-20K nodes into 10 intervals, where each interval

has 2K nodes. Figure 4.2 shows the fraction of Sybils in each interval for the Twitter dataset.

Since the Sina Weibo dataset does not have enough labeled nodes to draw a similar graph, we omit

its corresponding results. GANG achieves the best performance and substantially outperforms

other methods. Specifically, the fraction of Sybils detected by GANG ranges from 77.5% to 99.8%

in the top-10 2K-node intervals. The superiority of GANG comes from that GANG leverages

unidirectional edges and GANG utilizes both labeled Sybil and benign users.
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Figure 4.3 GANG’s relative errors of residual posterior beliefs vs. number of iterations.

GANG converges.

4.6.3 Convergence

We evaluate the convergence of our proposed GANG by observing the residual posterior beliefs

in two consecutive iterations. Figure 4.3 shows GANG’s relative errors of residual posterior beliefs

in two consecutive iterations, i.e., ‖p̂(t)− p̂(t−1)‖1/‖p̂(t)‖1, as a function of the number of iterations

t. We observe that the relative error first increases, then decreases, and finally converges on both

datasets.

4.6.4 Scalability

We measure the scalability of compared directed graph based methods with respect to the

number of edges in the graph. Since we need graphs with different number of edges, but the

Twitter and Sina Weibo datasets have fixed number of edges, we synthesize graphs according to

a Preferential Attachment (PA) model Barabási and Albert (1999). We note that there are more

advanced network models (e.g., the one proposed by Gong et al. Gong et al. (2012)) to synthesize

more realistic graphs. However, since the scalability does not depend on the graph structures,

we use the simple PA model to synthesize graphs. All the compared methods involve iterative

computing processes, e.g., TrustRank, DistrustRank, and CIA iteratively compute random walks,



www.manaraa.com

56

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Number of edges ×107

0

40

80

120

160

200

T
im

e
(s

ec
)

GANG Opt
GANG Basic
CatchSync
TrustRank

Figure 4.4 Running time of directed graph based methods on synthesized graphs with in-

creasing number of edges. DistrustRank and CIA have almost identical results

with TrustRank, and thus we omit their results for conciseness.

while CatchSync relies on the iterative HITS Kleinberg (1999) algorithm. For fair comparison,

we run the iterative processes with the same number of iterations. Figure 4.4 shows the running

time used by the directed graph based methods (GANG Basic and GANG Opt are the basic and

optimized versions of GANG, respectively) when we increase the number of edges in the synthesized

graph.

First, GANG Opt is slightly less efficient than random walk based methods TrustRank, Dis-

trustRank, and CIA. This is because, in each iteration, these methods traverse each unidirectional

edge once while GANG traverses twice. Second, GANG Opt is more scalable than CatchSync.

This is because CatchSync first uses HITS, which already has the same time complexity with

GANG Opt, to compute nodes’ hubness and authoritativeness scores, and then CatchSync further

computes each node’s synchronicity, which involves going through node pairs between a node’s

outgoing neighbors, and benignity, which involves going through node pairs between a node’s out-

going neighbors and all nodes. Third, GANG Opt is one order of magnitude more scalable than

GANG Basic.
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Table 4.3 Labeling results of the 1K nodes that are sampled from the top-ranked 100K

nodes for Sina Weibo.

Category Percentage

Sybils

Suspended users 41.5%

92.0%
Spammers 42.5%

Compromised users 8.0%

Normal users 6.8%

Unknown users 1.2%

4.6.5 Case Study on Sina Weibo

We apply our GANG to the Sina Weibo dataset and manually inspect the detected Sybils.

Specifically, we use all the 1980 labeled nodes as a training dataset and produce a ranking list for

the remaining nodes. Then we sample 1K nodes from the top-ranked 100K nodes uniformly at

random and manually inspect them. Table 4.3 shows the labeling results of the 1K nodes.

1) Suspended users. These users didn’t exist any more at the time of our inspection. They

could be suspended/deleted by Sina Weibo’s detector or the users themselves.

2) Spammers. These users post or share a large amount of advertisements, e.g., to promote their

products or to sell pirated products. These users violate Sina Weibo’s policy,1 and thus they should

be suspended/deleted by Sina Weibo company. Interestingly, we found that some spammers also

posted many seemingly benign tweets to camouflage themselves. For instance, Figure 4.5(a) shows

an example spammer who posts seemingly benign tweets exactly every 9 hours and 13 minutes. We

randomly sampled some tweets and used them as keywords to search on Baidu (the largest search

engine in China). We found that these tweets were simply copied from Internet. Figure 4.5(b)

shows the search results of one tweet. We suspect such spammers are controlled by software and

are trying to evade content-based detection. Indeed, they have successfully evaded Sina Weibo’s

detector.

3) Compromised users. These users posted benign tweets about daily activities before a certain

time point, and then they started to post or share a large amount of advertisements. We also

1http://weibo.cn/dpool/ttt/h5/regagreement.php
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(a) Periodic tweeting (b) Search results

Figure 4.5 (a) A user performing periodic tweeting. (b) Search results of one of the user’s

tweet on Baidu.

randomly sampled some benign tweets of these users, but we could not find them on the Baidu

search engine. Therefore, we suspect that these users could be compromised benign users. Our

method can detect these compromised users because they link to other spammers to share their

tweets.

4) Normal users. These users post benign tweets and comply with Sina Weibo’s policy.

5) Unknown users. These users had no tweets at the time of inspection, so we cannot classify

them through contents.

Comparing with Sina Weibo’s detector: When Sina Weibo’s detector detects a Sybil, the

user will be suspended or deleted. In other words, the number of Sybils detected by Sina Weibo’s

detector is upper bounded by the category suspended users, and the users in the category spammers

and compromised users have evaded Sina Weibo’s detector. However, our method GANG can detect

these Sybils.
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4.7 Summary

This chapter has introduced GANG, a guilt-by-association method on directed graphs, to detect

Sybils in directed social networks. Based on the unique characteristics of the Sybil detection

problem in directed graphs, we design a novel pairwise Markov Random Field to model the joint

probability distribution of the states of all users. In the basic version of GANG, we use LBP to

perform inference. Furthermore, we optimize GANG to make it convergent and more scalable via

eliminating message maintenance and approximating GANG by a concise matrix form.

We compare GANG with various existing guilt-by-association methods using a large-scale Twit-

ter dataset and a large-scale Weibo dataset with labeled Sybils and benign users. Our results

demonstrate that GANG substantially outperforms existing guilt-by-association methods. More-

over, we demonstrate that the optimized version of GANG is significantly more efficient than its

basic version.
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CHAPTER 5. COLLECTIVE CLASSIFICATION WITH JOINT WEIGHT

LEARNING AND PROPAGATION

5.1 Introduction

State-of-the-art collective classification methods have three key steps. In Step I, they assign a

prior reputation score to every node in the graph based on the training dataset. In Step II, they

assign weights to edges in the graph, where a large weight of an edge (u, v) indicates that u and v

are likely to have the same label. In Step III, they iteratively propagate the prior reputation scores

among the weighted graph to obtain a posterior reputation score for every node. The posterior

reputation scores are used to classify or rank nodes. The details of one or more of the three steps

could be different for different collective classification methods. For instance, some methods leverage

random walks for propagation in Step III, while some methods leverage loopy belief propagation

in Step III.

An edge (u, v) is said to be homogeneous if u and v have the same label, otherwise it is said to

be heterogeneous. The propagation in Step III requires that homogeneous edges have large weights

and heterogeneous edges have small weights. However, existing methods face a key limitation:

they assign small weights to a large number of homogeneous edges and/or large weights to a large

number of heterogeneous edges in Step II.

Specifically, most existing methods Pandit et al. (2007); Chau et al. (2011); Ye et al. (2011);

Cao et al. (2012); Gong et al. (2014a); Tamersoy et al. (2014); Akoglu et al. (2013); Li et al. (2014);

Rayana and Akoglu (2015); Wang et al. (2017b, 2018a); Jia et al. (2017a); Wang et al. (2017a)

simply set a large constant weight to all edges, ignoring the difference between homogeneous and

heterogeneous edges. A few methods Boshmaf et al. (2015); Gao et al. (2018) proposed to learn

edge weights using features extracted from nodes’ characteristics and the graph structure. For

instance, to detect Sybils in social networks, Íntegro Boshmaf et al. (2015) first learns a classifier
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based on users’ profiles to predict the probability that a node is a victim (a victim is a benign

user connecting to at least one Sybil) and then assigns small weights to all edges of the nodes that

are victims with high probabilities. However, Íntegro assigns small weights to a large number of

homogeneous edges, because a large number of nodes are victims Gao et al. (2018). SybilFuse Gao

et al. (2018) extracts features from the graph structure for each node, learns a classifier to predict

the prior reputation score for each node using the training dataset, and uses the prior reputation

scores to assign edge weights. In particular, an edge has a larger weight if the two nodes of the edge

are more likely to have the same label, where a node’s label is determined by its prior reputation

score. Since the prior reputation scores are inaccurate at determining nodes’ labels (otherwise we

do not need to propagate the prior reputation scores to obtain posterior reputation scores in Step

III), a large number of heterogeneous edges are assigned large weights while a large number of

homogeneous edges are assigned small weights.

As a result, existing methods have a limited success in the security and privacy problems that

have a large amount of heterogeneous edges, e.g., Sybil detection in weak-trust social networks like

Twitter, fake review detection, and attribute inference.

Our work: We propose a new framework to learn edge weights for graph-based security and

privacy analytics. Our framework is applicable to both RW-based and LBP-based methods. Our

key intuition is that the edge weights and the final posterior reputation scores produced by a

collective classification method should satisfy two goals. First, the labeled positive nodes and the

labeled negative nodes in the training dataset should have high and low posterior reputation scores,

respectively. Second, the edge weights and the posterior reputation scores should be consistent.

Specifically, we use the final posterior reputation scores to predict labels of nodes; an edge is

predicted to be homogeneous if the two nodes of the edge are predicted to have the same label,

otherwise the edge is predicted to be heterogeneous. Consistency between edge weights and poste-

rior reputation scores means that an edge that is predicted to be homogeneous should have a large

weight, while an edge that is predicted to be heterogeneous should have a small weight.
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We formulate learning edge weights as minimizing an objective function, where the objective

function is small if the two goals are achieved. However, it is computationally challenging to solve

the formulated optimization problem (we will discuss more details in Section 5.3.2) because the

final posterior reputation scores depend on the edge weights in a very complex way, e.g., every edge

weight could influence the final posterior reputation score of every node.

To address the computational challenge, we propose to jointly learn the edge weights and

propagate the posterior reputation scores, which can be viewed as an approximate solution to our

formulated optimization problem. Our key idea is that the posterior reputation scores are iteratively

updated in Step III and thus we iteratively learn edge weights using the current posterior reputation

scores instead of the final posterior reputation scores. Specifically, given the posterior reputation

scores in the tth iteration, we learn new edge weights and then use the learnt edge weights to

update the posterior reputation scores in the (t+ 1)th iteration. We aim to learn the edge weights

to satisfy the two goals: 1) the posterior reputation scores in the (t+ 1)th iteration should be large

and small for the labeled positive nodes and negative nodes in the training dataset, respectively;

and 2) the learnt edge weights should be consistent with the posterior reputation scores in the tth

iteration. Learning edge weights is efficient under our framework because the posterior reputation

scores of the nodes in the training dataset in the (t+ 1)th iteration only depend on weights of the

edges of the nodes in the training dataset.

We compare our framework with state-of-the-art RW-based and LBP-based methods using

multiple large-scale real-world datasets, which are from different application scenarios including

Sybil detection in social networks, fake review detection, and attribute inference attacks. For

instance, the Twitter dataset for Sybil detection has 42M users and 1.5B edges, while the Google+

dataset for attribute inference attacks has 5M users and 31M edges. Our results demonstrate that

our framework has significantly higher accuracies than state-of-the-art methods, with an acceptable

computational overhead (around 2-3 times slower than state-of-the-art methods). Moreover, we

apply our framework to detect Sybils in a large-scale directed Sina Weibo (a large social network

in China) dataset with 3.5M users and 653M edges. We manually verify the detected Sybils and



www.manaraa.com

63

our results show that our framework can accurately detect Sybils, e.g., 95% of the top-ranked 100K

users are Sybils.

We summarize our contributions as follows:

• We propose a novel framework to learn edge weights for graph-based security and privacy

analytics.

• We formulate learning edge weights as solving an optimization problem. Moreover, we design

efficient algorithms to solve the optimization problem.

• We compare our framework with state-of-the-art methods using multiple large-scale real-world

datasets from different security and privacy application scenarios.

5.2 Problem Definition

5.2.1 Collective Classification

Suppose we are given a graph (either undirected or directed) G = (V,E), where u ∈ V is a node

and (u, v) ∈ E is an edge, which indicates a certain relationship between u and v. |V | and |E| are

the number of nodes and edges, respectively. We are also given a training dataset L, which consists

of a set of labeled positive nodes LP and a set of labeled negative nodes LN . We denote by yu the

label of node u, where yu = 1 means that u is positive and yu = −1 means that u is negative. We

formally define the collective classification problem as follows:

Definition 12 (Collective Classification Problem). Suppose we are given 1) a graph (either undi-

rected or directed) and 2) a training dataset including both labeled positive nodes and labeled negative

nodes. Collective classification is to classify or rank the unlabeled nodes in the graph.

5.2.2 Evaluation Metrics

Like previous studies Viswanath et al. (2010); Mohaisen et al. (2011); Chau et al. (2011); Cao

et al. (2012); Boshmaf et al. (2015); Gong et al. (2014a); Tamersoy et al. (2014); Wang et al.

(2017b,a), we adopt the following metrics to evaluate a collective classification method for graph-

based security and privacy analytics.
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Accuracy: One way to measure the accuracy of a collective classification method is to use its

posterior reputation scores to classify the unlabeled nodes, i.e., a node is predicted to be positive

if its posterior reputation score is bigger than a certain threshold, and negative otherwise. Then,

accuracy is the fraction of unlabeled nodes whose labels are correctly predicted. However, such

accuracy highly relies on the threshold. Moreover, it is challenging to select a good threshold for

various collective classification methods. Therefore, Area Under the Receiver Operating Charac-

teristic Curve (AUC) is widely used to measure the accuracy of a collective classification method.

AUC does not depend on a threshold and can be consistently used to evaluate all collective clas-

sification methods that produce posterior reputation scores. In particular, we rank all unlabeled

nodes in a decreasing order with respect to their posterior reputation scores. AUC is the probability

that a randomly selected positive node ranks higher than a randomly selected negative node. If a

method ranks all positive nodes before negative nodes, then the method has an AUC of 1 (there

exists a threshold such that all nodes are correctly classified); if a method ranks all negative nodes

before positive nodes, then the method has an AUC of 0 (there exists a threshold such that all

nodes are incorrectly classified); a method has an AUC of 0.5 if the method ranks the unlabeled

nodes uniformly at random.

Scalability: In real-world security and privacy problems, the graph often has a very large scale,

e.g., hundreds of millions of nodes and edges. Therefore, a collective classification method should

be scalable. In particular, we use the computational time a method consumes to measure its

scalability/efficiency.

Robustness to label noise: The training dataset is often obtained via manual inspection of

nodes, or is crowdsourced from users or workers in a crowdsourcing platform such as Amazon

Mechanical Turk Wang et al. (2013). For instance, online social networks often provide users an

option to report a certain user as a spammer or fraudulent user, which could be incorporated into

the training dataset. However, due to human mistakes Wang et al. (2013); Freeman (2017), the

training dataset could have noise, i.e., some negative nodes are falsely labeled as positive and/or

some positive nodes are falsely labeled as negative. Therefore, we also use robustness to label noise
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in the training dataset to evaluate collective classification methods. In particular, suppose α% of

the nodes in the training dataset are falsely labeled and a method achieves an AUC of β with such

training dataset. Then, we say the method has a robustness of β when the label noise is at the

level of α%.

5.3 Our Framework

We first summarize state-of-the-art collective classification methods. In particular, the posterior

reputation scores are essentially solutions to a system of equations. Then, we formulate learning

edge weights as an optimization problem, which quantifies our goals on the posterior reputation

scores. However, it is computationally challenging to solve this optimization problem because

the posterior reputation scores depend on the edge weights in very complex ways. Finally, we

introduce our strategy to alternately learn edge weights and propagate posterior reputation scores.

Our strategy is an approximate solution to our formulated optimization problem.

5.3.1 Background

In state-of-the-art collective classification methods Gyöngyi et al. (2004); Wu et al. (2006); Li

et al. (2013); Pandit et al. (2007); Chau et al. (2011); Mohaisen et al. (2011); Cao et al. (2012);

Yang et al. (2012); Gong et al. (2014a); Tamersoy et al. (2014); Akoglu et al. (2013); Li et al. (2014);

Rayana and Akoglu (2015); Wang et al. (2017b); Jia et al. (2017b,a); Wang et al. (2017a); Boshmaf

et al. (2015); Gao et al. (2018), the posterior reputation scores are solutions to the following system

of equations:

p = f(q,W,p), (5.1)

where the column vector q is the nodes’ prior reputation scores, the column vector p is the nodes’

posterior reputation scores, and the matrix W is the edge weight matrix. Different methods

have different prior reputation scores q, assign different edge weight matrix W, and use different

function f . Next, we discuss the choices for these parameters in state-of-the-art methods. Since
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LBP-based methods outperform RW-based methods Koutra et al. (2011); Jia et al. (2017b); Wang

et al. (2017b,a), we will focus on LBP-based methods for simplicity. However, we stress that our

framework is also applicable to RW-based methods (see more details in Section 5.5).

LBP-based methods on undirected graphs: These methods Pandit et al. (2007); Chau et al.

(2011); Gong et al. (2014a); Tamersoy et al. (2014); Jia et al. (2017b); Wang et al. (2017b); Gao

et al. (2018) often assign a positive prior reputation score to a labeled positive node and a negative

prior reputation score to a labeled negative node in the training dataset. For example, the prior

reputation score qu of the node u can be assigned as follows:

qu =



θ if u ∈ LP

−θ if u ∈ LN

0 otherwise,

(5.2)

where θ > 0 (e.g., θ = 1 in our experiments), LP is the set of labeled positive nodes, and LN is

the set of labeled negative nodes in the training dataset. The entry wuv of the matrix W is 0 if u

and v are not connected, otherwise wuv and wvu are the weight of the edge (u, v). The edge weight

wuv indicates the likelihood that u and v have the same label. Specifically, wuv > 0 means that u

and v are likely to have the same label, i.e., the edge (u, v) is homogeneous; wuv < 0 means that u

and v are likely to have different labels, i.e., the edge (u, v) is heterogeneous; wuv = 0 means that

u and v are not correlated. Moreover, the function f is as follows:

f(q,W,p) = q + Wp, (5.3)

where we consider the optimized LBP Gatterbauer et al. (2015); Wang et al. (2017b,a); Gatterbauer

(2017) instead of the standard LBP Pearl (1988).

LBP-based methods on directed graphs: These methods Wang et al. (2017a) also assign the

prior reputation scores in Equation 5.2. Moreover, each connected node pair (u, v) has two entries

wuv and wvu in the weight matrix W, where wuv does not necessarily equal wvu. However, they

use a different function f as follows:

f(q,W,p) = q + (W ◦Ab)p + (W ◦Ai)I(p) + (W ◦Ao)J (p), (5.4)
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where the operator ◦ represents element-wise product of two matrices; the matrix Ab is the ad-

jacency matrix for bidirectional edges, i.e., if both the edge (u, v) and the edge (v, u) exist, then

Ab,uv = Ab,vu = 1, otherwise Ab,uv = Ab,vu = 0; Ai is the adjacency matrix for unidirectional

incoming edges, i.e., if (v, u) exists but (u, v) does not, then Ai,uv = 1, otherwise Ai,uv = 0; Ao is

the adjacency matrix for unidirectional outgoing edges, i.e., if (u, v) exists but (v, u) does not, then

Ao,uv = 1, otherwise Ao,uv = 0; I and J are functions that apply to every entry of p, and they

reset the positive and negative entries to be 0, respectively.

Suppose v is a neighbor of u. In LBP-based methods, a bidirectional neighbor v multiplies its

posterior reputation score by the edge weight and shares it with the node u; an incoming neighbor

v does so only if v’s posterior reputation score is negative; and an outgoing neighbor v does so only

if v’s posterior reputation score is positive. The intuition is that an incoming neighbor v influences

the node u’s label only if v is predicted to be negative, while an outgoing neighbor v influences the

node u’s label only if v is predicted to be positive. For instance, in Sybil detection on Twitter, if

v follows u but u does not follow back, then v is informative for determining u’s label only if v is

benign, because a Sybil can arbitrarily follow any users; if u follows v but v does not follow back,

then v is informative for determining u’s label only if v is Sybil, because any users can follow a

benign user.

Iteratively solving the posterior reputation scores: The posterior reputation scores in

Equation 5.1 are often solved iteratively. Specifically, the posterior reputation scores are initialized

to the prior reputation scores. Then, the posterior reputation scores are iteratively updated until

convergence as follows:

p(t+1) = f(q,W,p(t)), (5.5)

where p(t) is the posterior reputation scores in the tth iteration. Note that the edge weight matrix

W is fixed during the iterative process. Finally, in LBP-based methods, a node is predicted to be

positive if the node’s posterior reputation score is positive, otherwise the node is predicted to be

negative.
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5.3.2 Learning Edge Weights as An Optimization Problem

Our key intuition is that the edge weights and the posterior reputation scores produced by a

collective classification method should satisfy the following two goals.

• Goal 1. The posterior reputation scores of the labeled positive nodes and the labeled negative

nodes in the training dataset should be large and small, respectively.

• Goal 2. The edge weights and the posterior reputation scores should be consistent. In

particular, we use the posterior reputation scores to predict node labels; an edge is predicted

to be homogeneous if the two corresponding nodes are predicted to have the same label,

otherwise the edge is predicted to be heterogeneous. Consistency means that an edge that is

predicted to be homogeneous should have a positive weight, while an edge that is predicted

to be heterogeneous should have a negative weight.

Quantifying Goal 1: Given the training dataset L, we quantify the Goal 1 as finding an edge

weight matrix W such that the difference between the posterior reputation scores of the labeled

nodes and their labels is minimized. Formally, we aim to find an edge weight matrix W that

minimizes the following function:

L(W) =
1

2

∑
l∈L

(pl − yl)2, (5.6)

where pl is the posterior reputation score of node l and yl is the label of node l in the training

dataset, where yl = 1 if u is positive and yl = −1 otherwise. In machine learning, L(W) is known

as a loss function over the training dataset.

Quantifying Goal 2: An edge weight wuv is consistent with the posterior reputation scores of u

and v when 1) u and v are predicted to have the same label (i.e., pupv > 0) and wuv is positive, or

2) u and v are predicted to have different labels (i.e., pupv < 0) and wuv is negative. Therefore, to

capture Goal 2, we aim to learn a weight matrix W that maximizes the following function:

C(W) =
∑

(u,v)∈E

pupvwuv, (5.7)

where C(W) measures the consistency of a given weight matrix.
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Optimization problem: Combining the two goals, we aim to learn a weight matrix W via

solving the following optimization problem:

min
W
L(W) = L(W)− λC(W), (5.8)

where λ > 0 is a hyperparameter to balance the two goals.

Challenge for solving the optimization problem: It is computationally challenging to solve

the optimization problem in Equation 5.8. The reason is that every node’s posterior reputation

score depends on every edge weight. For instance, we can use the gradient descent method to solve

the optimization problem. Specifically, we can iteratively update the edge weight wuv as follows:

wuv ← wuv − γ
∂L(W)

∂wuv
, (5.9)

where γ is called learning rate. However, the derivative ∂L(W)
∂wuv

depends on ∂p
∂wuv

(derivative of

every node’s posterior reputation score with respect to the edge weight), due to the consistency

term C(W). Since p is a solution to Equation 5.1, ∂p
∂wuv

is a solution to the following system of

equations:

∂p

∂wuv
=
∂f(q,W,p)

∂wuv
. (5.10)

Therefore, in each iteration of gradient descent at updating the weight matrix, we need to

iteratively solve Equation 5.10 with |V | variables for each edge, which is computationally infeasible

for large graphs.

5.3.3 Joint Weight Learning and Propagation

The reason for the computational challenge is that we quantify the two goals using the final

posterior reputation scores. We observe that the final posterior reputation scores are iteratively

computed using Equation 5.5. Therefore, we propose to quantify the two goals using the current

posterior reputation scores during the iterative process. Specifically, given the posterior reputation

scores in the tth iteration, we aim to learn a weight matrix such that 1) the posterior reputation

scores in the (t + 1)th iteration of the labeled positive nodes and the labeled negative nodes in
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W(0) p(0)

W(1) p(1)

W(2) p(2)

…

Update p Update W

…

Figure 5.1 Jointly learning edge weights and updating posterior reputation scores.

the training dataset are large and small, respectively (Goal 1); and 2) the edge weights and the

posterior reputation scores in the tth iteration are consistent (Goal 2). Then, we compute the

posterior reputation scores in the (t + 1)th iteration using the learnt weight matrix. In other

words, we alternately learn edge weights and propagate reputation scores. Figure 5.1 illustrates

our framework.

Propagating posterior reputation scores: Given the weight matrix W(t−1) and the posterior

reputation scores p(t−1) in the (t − 1)th iteration, we compute the posterior reputation score p(t)

in the tth iteration as follows:

p(t) = f(q,W(t−1),p(t−1)). (5.11)

Learning weight matrix: Moreover, given the weight matrix W(t−1) in the (t − 1)th iteration

and the posterior reputation score p(t) in the tth iteration, we learn the weight matrix W(t) in the

tth iteration as a solution to the following optimization problem:

min
W(t)
L(W(t)) =

1

2

∑
l∈L

(p
(t+1)
l − yl)2 − λ

∑
(u,v)∈E

p(t)
u p(t)

v w(t)
uv , (5.12)
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where the first term in the objective function L(W(t)) quantifies the Goal 1, the second term

quantifies the Goal 2, and p(t+1) = f(q,W(t),p(t)). From a machine learning perspective, the first

term is known as a loss function over the training dataset, while the second term is a regularization

term, which we call consistency regularization. We use gradient descent to solve the optimization

problem. Specifically, we initialize W(t) to be the weight matrix W(t−1), and then we iteratively

update the edge weight w
(t)
uv for each edge (u, v) using Equation 5.9: w

(t)
uv ← w

(t)
uv − γ ∂L(W(t))

∂w
(t)
uv

.

However, different from the objective function L(W) in Equation 5.8, the derivative ∂L(W(t))

∂w
(t)
uv

can

be efficiently computed because p(t) is given. In particular, we have:

∂L(W(t))

∂w
(t)
uv

=
∑
l∈L

(p
(t+1)
l − yl)

∂p
(t+1)
l

∂w
(t)
uv

− λp(t)
u p(t)

v . (5.13)

For LBP-based methods on undirected graphs, the function f is described in Equation ??.

Therefore, we have:

LBP for undirected graphs:

∂p
(t+1)
l

∂w
(t)
uv

=



p
(t)
v if u = l

p
(t)
u if v = l

0 otherwise

(5.14)

For LBP on directed graphs, the function f is described in Equation 5.4. Therefore, we have:

LBP for directed graphs:

∂p
(t+1)
l

∂w
(t)
uv

=


Ab,uvp

(t)
v +Ai,uvI(p

(t)
v ) +Ao,uvJ (p

(t)
v ) if u = l

0 otherwise

(5.15)

Note that, in gradient descent, we can repeat multiple iterations to compute the weight matrix

W(t). However, we find that our methods already work well using only one iteration. Moreover,

one iteration makes our methods more efficient. Therefore, we will apply one iteration to compute

W(t).

We alternately propagate posterior reputation scores and learn edge weights until the posterior

reputation scores in two consecutive alternations are small enough (e.g., ‖p(t+1)−p(t)‖1/‖p(t+1)‖1 <

10−3) or we have reached the allowed maximum number of alternations (e.g., 15 in our experiments).
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Computational complexity: In both propagating posterior reputation scores and learning edge

weights, our framework traverses all edges. The time complexity of our framework is O(|E| · T ),

where T is the number of alternations. State-of-the-art LBP-based methods Pandit et al. (2007);

Chau et al. (2011); Gong et al. (2014a); Wang et al. (2017b); Jia et al. (2017b); Wang et al.

(2017a) have the same asymptotic time complexity. As we will demonstrate in our experiments,

our framework will be 2-3 times slower than state-of-the-art LBP-based methods in practice. This

is because our framework learns edge weights in each iteration. However, this time overhead is

tolerable in practice, especially the targeted security and privacy applications are not time-critical.

For instance, on a Twitter dataset with 1.5 billion edges, our method finishes within 3 hours on

a server with 512GB memory and 32 cores. Moreover, our method can be easily parallelized and

should be scalable to graphs with tens of billions of edges on a modern data center.

Table 5.1 Dataset statistics.

Dataset #Nodes #Edges Ave. degree

Twitter 41,652,230 1,468,364,884 71

Sina Weibo 3,538,487 652,889,971 369

Yelp 520,230 718,144 3

Google+ 5,735,175 30,644,909 11

5.4 Evaluation

We evaluate our framework on two security applications (Sybil detection, fake review detection)

and one privacy application (attribute inference attacks in social networks). We compare our

framework with state-of-the-art RW-based methods and LBP-based methods in terms of AUC,

scalability, and robustness to label noise.
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5.4.1 Experimental Setup

5.4.1.1 Dataset Description

We use a Twitter dataset and a Sina Weibo dataset for Sybil detection, a Yelp dataset for fake

review detection, and a Google+ dataset for attribute inference attacks. Table 5.1 summarizes the

basic dataset statistics.

Twitter: We obtained a Twitter dataset with real Sybils from Wang et al. Wang et al. (2017b).

Specifically, the directed Twitter follower-followee graph was collected by Kwak et al. Kwak et al.

(2010). A directed edge (u, v) means that u follows v. This graph contains around 42M users

and 1.5B edges. A user that was suspended by Twitter is treated as a Sybil (positive), while an

active user is treated as benign (negative). In total, 205,355 nodes are Sybils, 36,156,909 nodes are

benign, and the remaining nodes are unlabeled.

Sina Weibo: We obtained a Sina Weibo dataset with around 3.5M users and 653M directed edges

from Fu et al. Fu et al. (2017). Like Twitter, a directed edge (u, v) means that u follows v. Fu et

al. also manually labeled 2000 users sampled uniformly at random. Among them, 482 were Sybil

users, 1498 were benign users, and 20 were unknown.

Yelp: We obtained a Yelp dataset from Rayana and Akoglu (2015), which contains Yelp reviews

for restaurants located in New York City. The dataset has 160,225 users, 923 products, and 359,052

reviews. By constructing an undirected User-Review-Product graph, we have 520,230 nodes and

718,144 edges. A review is treated as fake if the review is filtered or not recommended by Yelp,

otherwise the review is treated as genuine. Around 10% of the reviews are fake in the dataset.

In the User-Review-Product graph, we only concern the labels of the review nodes, where a fake

review is treated as a positive node and a genuine review is treated as a negative node.

Google+: We obtained an undirected Google+ social network with user attributes from Gong

et al. (2012); Jia et al. (2017b). The dataset has around 5.7M users and 31M edges. The user

attribute is cities lived and the dataset has 50 most popular cities. 3.25% of users disclosed at

least one of these cities as their cities lived. We treat each city as a binary attribute and perform
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attribute inference for each binary attribute separately. Specifically, given a city, a user is treated

as positive if the user lives/lived in the city, while treated as negative if the user does not.

5.4.1.2 Training and testing

On Twitter, we sample 3,000 positive nodes and 3,000 negative nodes uniformly at random as

the training set; and we treat the remaining positive and negative nodes as the testing set. On

Sina Weibo, we split the 1980 labeled users into two halves; one is treated as the training set and

the other as the testing set. On Yelp, we randomly sample 1,000 fake reviews and 1,000 genuine

reviews as the training set; and we treat the remaining reviews as the testing set. On Google+, we

select 75% of the users who have at least one city as training set and treat the remaining users who

have at least one city as testing set. Recall that we have 50 cities in the Google+ dataset, where

each city is treated as a binary attribute independently. The AUC of one method for the Google+

dataset is averaged over the 50 cities.

5.4.1.3 Compared methods

We compare our framework with state-of-the-art RW-based methods and LBP-based methods

on undirected graphs and directed graphs.

RW-based methods for undirected graphs (RW-N-U, RW-P-U, RW-B-U, and RW-

FLW-U): We consider the RW-based methods RW-N Cao et al. (2012), RW-P Wu et al. (2006),

RW-B Jia et al. (2017a), and RW-FLW Boshmaf et al. (2015). Please refer to Section ?? for details

about these methods. Note that the method developed by Wu et al. Wu et al. (2006) is originally

for directed graphs. We apply it to undirected graphs via ignoring the edge directions. RW-FLW

requires a classifier to predict the probability that a node is a victim. We consider the classifier is

optimal, i.e., it correctly predicts all victims, which gives advantages to RW-FLW. More specifically,

we set such probability of each victim to be 0.9 and such probability of each non-victim to be 0.1.

We add a suffix “-U” to each method to indicate that they are for undirected graphs.
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We note that Twitter and Sina Weibo are directed graphs. When applying these methods on the

two datasets, we transform them to undirected graphs. Specifically, we keep an edge between two

nodes only if they are connected by directed edges in both directions. Moreover, these methods only

work for connected graphs, so we extract the largest connected component from the transformed

undirected graph.

RW-based methods for directed graphs (RW-N-D and RW-P-D): We use TrustRank Gyöngyi

et al. (2004) as RW-N-D and DistrustRank Wu et al. (2006) as RW-P-D. We add a suffix “-D” to

indicate that these methods are for directed graphs.

LBP-based methods for undirected graphs (LBP-U, LBP-FLW-U): We consider the

optimized LBP method Jia et al. (2017b) and LBP-FLW Gao et al. (2018) that learns edge

weights. Like RW-based methods for undirected graphs, we transform the directed Twitter and

Sina Weibo graphs into undirected ones. In LBP-FLW, we extract structure features for nodes

and learn an SVM classifier to predict the prior reputation score for each unlabeled node. Then,

following the setting in Gao et al. (2018), we assign a weight 0.4 to an edge if the two corresponding

nodes are predicted to have the same label and a weight −0.4 otherwise. For the undirected Twitter

and Sina Weibo graphs, the features are extracted from the original directed graph and include

local clustering coefficient, incoming edges accepted ratio, and outgoing edges accepted ratio Gao

et al. (2018). For the undirected Yelp and Google+ graphs, only the local clustering coefficient is

used.

LBP-based methods for directed graphs (LBP-D): Only one LBP-based method (GANG) Wang

et al. (2017a) for directed graphs was developed and we compare with it.

Our LBP-based methods (LBP-JWP-w/o, LBP-JWP-L1, LBP-JWP-L2, and LBP-

JWP): LBP-JWP-w/o is the variant of our LBP-based method that does not use the consistency

term in the optimization problem in Equation 5.12 when learning edge weights. From the ma-

chine learning perspective, the first term in the objective function of the optimization problem in

Equation 5.12 is a loss function over the training dataset, and the second term is a regularization

term about the edge weights, which we call consistency regularization. In machine learning, L1 and
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L2 regularizations are widely used, which are −∑(u,v)∈E |wuv|1 and −∑(u,v)∈E w
2
uv, respectively.

LBP-JWP-L1 and LBP-JWP-L2 respectively are the variants that use the conventional L1 and L2

regularizations instead of our consistency regularization when learning edge weights. LBP-JWP is

our method with the consistency regularization. We add the suffix “-U” and “-D” to indicate the

versions that are used for undirected and directed graphs, respectively.

Table 5.2 AUCs of undirected methods.

Methods Twitter Sina Weibo Yelp Google+

RW

RW-N-U 0.57 0.61 0.55 0.59

RW-P-U 0.58 0.61 0.57 0.58

RW-LFW-U 0.53 0.54 0.48 0.57

RW-B-U 0.63 0.68 0.58 0.63

LBP
LBP-U 0.64 0.68 0.58 0.66

LBP-FLW-U 0.62 0.66 0.58 0.66

Ours

LBP-JWP-w/o-U 0.69 0.74 0.60 0.69

LBP-JWP-L1-U 0.65 0.70 0.59 0.66

LBP-JWP-L2-U 0.68 0.72 0.60 0.68

LBP-JWP-U 0.73 0.77 0.62 0.72

5.4.1.4 Implementation and parameter setting

We implement the RW-based methods and our methods in C++. The authors of the existing

LBP-based methods Wang et al. (2017b,a) made their C++ source code publicly available, and we

use them to evaluate existing LBP-based methods. We performed all our experiments on a Linux

machine with 512GB memory and 32 cores. For our methods, we assign prior reputation scores

1, -1, and 0 to labeled positive nodes, labeled negative nodes, and unlabeled nodes, respectively.

Following Wang et al. (2017b) and Wang et al. (2017a), we initialize all edge weights to be the

inverse of the average node degree in a graph, i.e., w
(0)
uv = 1

Ave. degree . Moreover, we normalize edge
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Table 5.3 AUCs of directed methods.

Methods Twitter Sina Weibo

RW
RW-N-D 0.60 0.66

RW-P-D 0.63 0.64

LBP LBP-D 0.72 0.80

Ours

LBP-JWP-w/o-D 0.75 0.82

LBP-JWP-L1-D 0.72 0.79

LBP-JWP-L2-D 0.73 0.80

LBP-JWP-D 0.78 0.85

weights to be in the range [-0.5,0.5] in each iteration. We set the learning rate γ in Equation 5.9

to be 1.0. Moreover, we set the regularization parameter λ = 0.1 on the Twitter and Sina Weibo

datasets and λ = 1.0 on the Google+ and Yelp datasets considering their different average node

degrees. For all other compared methods, we set the parameters according to their authors.

5.4.2 Accuracy (AUC)

Table 5.2 and Table 5.3 respectively show the AUCs of the compared undirected graph and

directed graph based methods.

Our methods outperform existing ones: Our methods LBP-JWP-U and LBP-JWP-D achieve

the best AUCs consistently on different datasets. For instance, on undirected graphs, LBP-JWP-U

improves upon the best existing method by 0.04 to 0.09 on the four datasets. This means that our

strategy of jointly learning edge weights and propagating reputation scores is effective. Moreover,

LBP-JWP outperforms LBP-JWP-w/o, LBP-JWP-L1, and LBP-JWP-L2 on both undirected and

directed graphs. This means that our consistency regularization does improve AUC and outper-

forms conventional L1 and L2 regularizations. In fact, L1 and L2 regularizations decrease AUCs,

compared to LBP-JWP-w/o that does not use regularization.
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(a) LBP-JWP-U
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Figure 5.2 Average weight learnt by (a) LBP-JWP-U and (b) LBP-JWP-D of edges be-

tween positive nodes and negative nodes, edges between positive nodes, and

edges between negative nodes on Twitter, as the number of iterations increases.

We observe that on both methods, the average weights of edges between pos-

itive nodes and negative nodes decrease, while the average weights of edges

between negative (or positive) nodes increase as t increases.

Note that all compared methods have relatively low AUCs on Yelp. This is because the Yelp

graph is very sparse, i.e., Ave. degree=3, and thus its graph structure has less information that

can be exploited by graph-based methods.

To further understand why our framework outperforms existing methods, we visualize the learnt

edge weights. Specifically, we classify edges into three categories: 1) edges between positive nodes

and negative nodes, 2) edges between positive nodes, and 3) edges between negative nodes. The

edges in the first category are heterogeneous, while the edges in the second and third categories are

homogeneous. Figure 5.2 shows the average weights of the three categories of edges as a function

of the number of iterations t on the Twitter dataset. As we can see, for both LBP-JWP-U and

LBP-JWP-D, the average weights of edges between positive nodes and negative nodes decrease,

while the average weights of edges between negative (or positive) nodes increase as the number of

iterations increases. This is because we enforce the consistency regularization when learning the

edge weights.
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Figure 5.3 Impact of (a) the regularization parameter λ and (b) the learning rate γ. As λ

and γ increase, AUCs of our methods first increase, then stabilize, and finally

decrease.

However, for most existing methods, the edge weights are constant, which ignore the differences

between heterogeneous and homogeneous edges. RW-FLW learns edge weights. However, we find

that the average weights of all three types of edges are close to -0.3 (after normalizing edge weights

to be [-0.5, 0.5]). This is because a large number of nodes are victims. Moreover, for LBP-FLW,

the average weights of all three types of edges are close to 0.2. This means that LBP-FLW can not

learn small weights for heterogeneous edges. Note that all these methods fix the edge weights and

propagate reputation scores using the fixed edge weights.

LBP-based methods outperform RW-based methods: We find that LBP-based methods

achieve at least the same AUCs as RW-based methods, and LBP-based methods achieve higher

AUCs in most cases. In particular, for methods on undirected graphs, the best existing LBP-

based method achieves the same AUCs as the best existing RW-based method on Sina Weibo and

Yelp, while the best existing LBP-based method achieves slightly higher AUCs on Twitter and

Google+. For methods on directed graphs, existing LBP-based method significantly outperforms

existing RW-based methods. For instance, on Sina Weibo, LBP-D outperforms RW-N-D by 0.14.
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A possible reason is that LBP-D leverages both labeled positive nodes and labeled negative nodes

in the training dataset, while RW-N-D only considers labeled negative nodes.

Different variants of RW-based methods: We observe that RW-B-U consistently outperforms

other RW-based methods for undirected graphs. One reason could be that RW-B-U incorporates

both labeled positive nodes and labeled negative nodes in the training dataset, while the other RW-

based methods incorporate either of them. Performance of RW-N and RW-P is dataset-dependent,

i.e., RW-N outperforms RW-P on some datasets while RW-P outperforms RW-N on other datasets.

Impact of the regularization parameter λ and the learning rate γ: Figure 5.3(a) shows

AUCs of our methods vs. the regularization parameter λ on the Twitter dataset (we have similar

tendencies on the other datasets and thus choose Twitter for simplicity). λ = 0 means that we

do not use the consistency term. We observe that AUCs first increase, then stabilize, and finally

decrease as λ increases. For instance, AUC of LBP-JWP-U increases until λ is around 0.08, then

stabilizes until λ is around 0.15, and finally decreases after that. Figure 5.3(b) shows AUCs of

our methods vs. the learning rate γ on the Twitter dataset. γ = 0 means that we do not learn

edge weights, and our methods reduce to existing methods. Likewise, we observe that AUCs first

increase, then stabilize, and finally decrease.

Impact of the number of iterations t: Figure 5.4 shows the AUCs of our methods on Twitter

vs. iteration number t. We observe that AUCs first gradually increase as our methods run more

iterations and then stabilize after around 10 iterations.

5.4.3 Scalability

We measure scalability of the compared methods with respect to the number of edges in the

graph. Since we need graphs with different number of edges, we synthesize graphs using a network

generation model. In particular, we use the popular Preferential Attachment (PA) model Barabási

and Albert (1999) developed by the network science community to generate graphs. Specifically,

we first use the PA model to synthesize an undirected graph G. Then, we treat each undirected
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Figure 5.4 Impact of the number of iterations on the AUCs of our methods. We observe

that AUCs first gradually increase as we perform more iterations and then

stabilize.

edge (u, v) in G as two directional edges (u, v) and (v, u). Finally, we sample 50% of directed edges

and remove them to construct a directed graph G′.

We run methods for undirected graphs on G and methods for directed graphs on G′. We note

that all the compared methods iteratively solve the posterior reputation scores. For fair comparison,

we run the iterative processes with the same number of iterations (e.g., 10 in our experiments).

Figure 5.5(a) and Figure 5.5(b) respectively show the running time of these methods on undirected

graphs and directed graphs as the number of (undirected and directed) edges increases. Note that

RW-N-U, RW-P-U, and RW-FLW-U have the same running time and thus we only show RW-P-U

for simplicity. Similarly, RW-N-D and RW-P-D have the same running time and thus we only show

RW-P-D for simplicity.

Our methods have an acceptable computational overhead: We observe that our meth-

ods LBP-JWP-U and LBP-JWP-D are less efficient than existing methods. This is because our

methods jointly learn edge weights and propagate reputation scores, while existing methods only
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Figure 5.5 Running time on synthesized graphs with increasing number of edges. (a)

Methods for undirected graphs. (b) Methods for directed graphs.

propagate reputation scores. However, the computational overhead of our methods is acceptable.

In particular, our methods are 2-3 times slower than state-of-the-art methods.

Undirected graphs vs. directed graphs: When an undirected graph and a directed graph

have the same number of edges, a method for the directed graph is more efficient than its variant

for the undirected graph. For instance, RW-P-D is more efficient than RW-P-U, LBP-D is more

efficient than LBP-U, LBP-JWP-D is more efficient than LBP-JWP-U. The reason is that RW-P-

D traverses each directed edge once, while RW-P-U traverses each undirected edge twice in each

iteration of propagating reputation scores; LBP-D (or LBP-JWP-D) only traverses an edge (u, v)

twice when the directed edge (v, u) does not exist, while LBP-U (or LBP-JWP-U) traverses each

undirected edge twice in each iteration.

LBP-based methods vs. RW-based methods: For undirected graphs, LBP-U and RW-P-U

have the same running time. This is because both methods traverse each undirected edge twice

in each iteration of propagating reputation scores. However, on directed graphs, LBP-D is slightly

slower than RW-P-D. This is because RW-P-D traverses each directed edge once in each iteration,

while LBP-D traverses an edge (u, v) twice when the directed edge (v, u) does not exist. These

results are consistent with previous studies Wang et al. (2017b,a).



www.manaraa.com

83

0 10 20 30 40 50
Fraction of label noise (%)

0.3

0.4

0.5

0.6

0.7

0.8

A
U

C

RW-N-U
RW-P-U

RW-FLW-U
RW-B-U

(a)

0 10 20 30 40 50
Fraction of label noise (%)

0.3

0.4

0.5

0.6

0.7

0.8

A
U

C

LBP-U
LBP-FLW-U

LBP-JWP-w/o-U
LBP-JWP-U

(b)

0 10 20 30 40 50
Fraction of label noise (%)

0.3

0.4

0.5

0.6

0.7

0.8

A
U

C

RW-N-D
RW-P-D
LBP-D

LBP-JWP-w/o-D
LBP-JWP-D

(c)

Figure 5.6 Impact of label noise on Twitter. (a) RW-based methods for undirected graphs;

(b) LBP-based methods for undirected graphs; (c) Methods for directed graphs.

5.4.4 Robustness to Label Noise

We randomly sample α% of labeled positive nodes and labeled negative nodes in the training

dataset, and change their labels to be negative and positive, respectively. Therefore, the label

noise level in the training dataset is α%. We repeat the sampling process 5 times. Figure 5.6(a),

Figure 5.6(b), and Figure 5.6(c) respectively show the average AUCs on Twitter for undirected

graph based methods using RW, undirected graph based methods using LBP, and directed graph

based methods, as we increase α% from 0% to 50%. We cut off at the 50% because no methods

are effective for a label noise level that is higher than 50%.

First, LBP-JWP consistently performs the best and can tolerate label noise up to 20% on the

undirected graph and 30% on the directed graph. For instance, LBP-JWP-D’s AUC only slightly

decreases when the label noise is 30%. Moreover, LBP-JWP has higher AUCs than LBP-JWP-w/o,

which shows the effectiveness of our consistency regularization. Second, LBP-based methods and

RW-B-U can tolerate relatively larger label noise than RW-N and RW-P. A possible reason is that

LBP-based methods and RW-B-U leverage both labeled positive nodes and labeled negative nodes

in the training dataset, while RW-N and RW-P only use labeled negative nodes or labeled positive

nodes.
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Figure 5.7 Fraction of Sybils in the sampled 100 users in each of the top-10 10K-user

intervals for LBP-JWP-D on the Sina Weibo dataset.

5.4.5 Case Study on Sina Weibo

We apply our LBP-JWP-D to detect Sybils on Sina Weibo. Specifically, we use the 1,980

labeled users as a training dataset, leverage LBP-JWP-D to compute a posterior reputation score

for every node, and rank all unlabeled nodes in a descending order with respect to their posterior

reputation scores. Therefore, the nodes that are ranked higher could be more likely to be Sybils.

In practice, social network providers often rely on human workers to manually inspect users and

detect Sybils Cao et al. (2012). The ranking list produced by our method can be used as a priority

list for the human workers, i.e., the human workers can inspect users according to the ranking list.

Within the same amount of time, the human workers could find more Sybils when inspecting users

according to the ranking list than inspecting users that are randomly picked.

We follow the same strategy of Wang et al. (2017a) to evaluate the top-ranked 100K users

produced by our method. In particular, via manual inspection, Wang et al. Wang et al. (2017a)

classified users on Sina Weibo into five categories: Suspended users, Spammers, Compromised users,

Normal users, and Unknown users. The first three categories (i.e., suspended users, spammers, and

compromised users) are treated as Sybils, and the normal users are treated as benign. We divide
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Table 5.4 Composition of the manually labeled 1,000 randomly sampled users.

Category LBP-D LBP-JWP-D

Sybil

Suspended Users 41.5%

92.0%

41.9%

94.9%Spammers 42.5% 44.3%

Compromised Users 8.0% 8.7%

Benign 6.8% 4.3%

Unknown 1.2% 0.8%

the top-ranked 100K users into 10 10K-user intervals. We randomly sample 100 users from each

interval, and thus we have 1,000 sampled users in total. We manually inspected the Sina Weibo

pages of the 1,000 sampled users and labeled them to be one of the five categories following the

same strategy in Wang et al. (2017a).

Table 5.4 shows the manual labeling results of the 1,000 sampled users. For comparison, we

also include the results for LBP-D, which are from Wang et al. (2017a) instead of being labeled

by us. We note that LBP-D produces a different ranking list from our method, and the sampled

1,000 users are also different for them. We observe that 94.9% of the nodes ranked by our method

are Sybils, around 3% higher than those ranked by LBP-D Wang et al. (2017a). We note that

Íntegro Boshmaf et al. (2015) has a similar accuracy at detecting Sybils in Tuenti. Moreover, our

method detects a large number of Sybils that evaded Sina Weibo’s detector. In particular, if a

Sybil was detected by Sina Weibo, then the Sybil should have been suspended or deleted. However,

44.3% of our top-ranked 100K nodes are spammers and 8.7% of them are compromised users, all

of which evaded Sina Weibo’s detector. Figure 5.7 shows the fraction of Sybils in the sampled 100

users in each 10K-user interval. We observe that even if the training dataset is small (around 0.05%

of all users in the dataset), above 90% of nodes are Sybils in each of the top-10 10K-user interval

ranked by our method.
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Table 5.5 AUCs of our framework for RW-based methods.

Methods Twitter Sina Weibo Yelp Google+

RW-B-U 0.63 0.68 0.58 0.63

RW-JWP-w/o-U 0.66 0.72 0.58 0.65

RW-JWP-U 0.69 0.74 0.60 0.68

5.5 Discussion and Limitation

Applying our framework to RW-based methods: For conciseness, we focus on applying

our framework to LBP-based collective classification methods for graph-based security and privacy

analytics. However, our framework is also applicable to RW-based methods. In particular, RW-

based methods can also be viewed as iteratively solving system of equations, though the function

f(q,W,p) is different for RW-based methods. Therefore, our framework can also learn edge

weights for RW-based methods. We implemented our framework to learn edge weights for RW-

B-U Jia et al. (2017a), a RW-based method for undirected graphs that incorporates both labeled

positive nodes and labeled negative nodes in the training dataset. The function f for RW-B-U

is f(q,W,p) = Wp, where wuv is the edge weight of (u, v) divided by the weighted degree of u.

Table 5.5 shows the AUCs of RW-B-U, RW-JWP-w/o-U, and RW-JWP-U for the four datasets.

RW-JWP-U uses our framework to learn edge weights for RW-B-U, while RW-JWP-w/o-U uses our

framework without the consistency regularization to learn edge weights for RW-B-U. Our results

show that our framework improves AUCs for RW-B-U and the consistency regularization helps

improve AUCs.

Computational overhead: Theoretically, our method has the same asymptotic time complexity

as state-of-the-art random walk based and belief propagation based methods: linear to the number

of edges in the graph. Empirically, our method is 2-3 times slower. However, this time overhead is

tolerable in practice, especially the targeted security and privacy applications are not time-critical.

For instance, on the Twitter dataset with 1.5 billion edges, our method finishes within 3 hours on
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a server with 512GB memory and 32 cores. Our method can be easily parallelized and should be

scalable to graphs with billions of edges on a modern data center.

No manual labels: Like existing methods, our framework relies on a manually labeled training

dataset. When there are no such training dataset, our framework may also be applicable. Specifi-

cally, Wang et al. Wang et al. (2018b) recently proposed SybilBlind, which generalizes LBP-based

collective classification methods to the scenarios where no training dataset is available. Their key

idea is to randomly sample some nodes from the graph and treat them as labeled nodes (some of

them would be labeled incorrectly, i.e., the training data has noise). Then, they apply a LBP-based

method with the sampled training data. Since LBP-based methods are robust to some noise in

training data, they repeat the sampling process multiple times and design some method to select

the sampling trials that have small label noise. We believe such idea can also be applied to our

framework when no manual labels are available, because our framework is also robust to some noise

in training data.

Comparing with other graph-based classification methods: A graph-based classification

problem can also be solved via graph embedding methods and Graph Convolutional Networks

(GCN) Kipf and Welling (2017). In particular, a graph embedding method first learns feature

vectors for nodes via unsupervised learning, and then learns a classifier (logistic regression classi-

fier in our experiments) based on the feature vectors and the training dataset. We compare with

three state-of-the-art graph embedding methods (DeepWalk Perozzi et al. (2014), LINE Tang et al.

(2015), and node2vec Grover and Leskovec (2016)) as well as GCN for Sybil detection. We ob-

tained the public source code of these methods from their authors. As DeepWalk, node2vec, and

GCN are not scalable to the large graphs used in our experiments, we perform experiments on

an undirected Facebook graph with synthetic Sybils. The Facebook graph contains 4,039 negative

nodes and 88,234 edges. Following prior work Wang et al. (2018a), we replicate the nodes and

their edges as positive nodes and edges. Moreover, we add 10k edges between the positive nodes

and negative nodes uniformly at random. We randomly select 100 positive nodes and 100 negative

nodes as the training dataset. A graph embedding method learns a 128-dimension feature vector
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for each node. We set the number of hidden units of GCN to be 64 and set the dropout rate as

0.5. We observe that our method is more accurate than the compared methods. Specifically, Deep-

Walk, LINE, node2vec, and GCN achieve AUCs of 0.62, 0.94, 0.74, and 0.88, respectively, while

our LBP-JWP-U achieves an AUC of 1. We speculate the reason is that graph embedding aims to

learn general feature representations that could be used for various purposes (classification is just

one of the purposes) and GCN is not able to learn discriminative hidden features for classification.

5.6 Summary

The chapter has proposed a novel framework to learn edge weights for graph-based security

and privacy analytics. The framework can be applied to various security and privacy problems

including, but not limited to, Sybil detection in social networks, malware detection, fake review

detection, and attribute inference attacks.

Moreover, the framework can be incorporated into a state-of-the-art collective classification

method (both RW-based methods and LBP-based methods) to further enhance its classification ac-

curacy with an acceptable computational overhead. Experimental results demonstrate that jointly

learning edge weights and propagating reputation scores is effective for graph-based security and

privacy analytics.
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CHAPTER 6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

This dissertation has a comprehensive study of collective classification methods for graph-based

security and privacy problems. In Chapter 1, we first illustrated the setting and key steps of

collective classification, demonstrated that various security and privacy problems can be modeled

as collective classfication, and surveyed representative graph-based security and privacy methodss.

Then, we summarized the advantages and disadvantages of existing RW-based and LBP-based

collective classification methods. Our purpose is to design novel collective classification methods

to address the disadvantages and maintain the advantages of existing methods.

In Chapter 2, we unified existing RW-based and LBP-based methods into a local rule-based

framework. Under our framework, designing better collective classification methods reduces to de-

signing better local rules. In Chapter 3, we designed a novel local rule for undirected graph-based

Sybil detection in social networks. Then, we developed a novel collective classification method that

integrates advantages of both RW-based and LBP-based methods and overcomes their limitations.

In Chapter 4, we further studied directed graph-based Sybil detection in social networks. Sybil

detection, as well as other security and privacy problems, in directed graphs has its unique char-

acteristics. By capturing the unique characteristics, we developed a customized pairwise Markov

Random Field model on directed graphs, and inferred the model via an optimized LBP.

In Chapter 5, we targeted the long-standing edge weight learning problem in graph-based se-

curity and privacy analytics, and developed an edge weight learning framework. The key idea of

our framework is to formulate edge weight learning as an optimization problem and then design

approximation algorithms to efficiently solve the relaxed optimization problem. Our framework is

general, as it can be applied to various security and privacy problems and incorporated into both

RW-based and LBP-based collective classification methods.
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6.2 Future Work

6.2.1 Collective Classification under Adversarial Settings

In this dissertation, we have evaluated collective classification methods with respect to accuracy

(AUC, top-ranking performance), scalability, convergence, and robustness to random label noise.

However, we need to further study the security of collective classification methods under adversarial

settings (i.e., in the presence of attackers). For instance, how can an attacker inject carefully crafted

label noise to reduce accuracy?

In future, we will explore the complete attack surface of existing collective classification methods.

Specifically, we will characterize a threat model by considering attacker’s goal (i.e., what does an

attacker aim to achieve?), attacker’s knowledge (i.e., what does an attacker know about the setting

of a collective classification method), and attacker’s capability (i.e., how can an attacker manipulate

a collective classification). Under the threat model, we will design attack strategies as well as

defenses.

6.2.2 Incorporating Problem-Specific Characteristics

In this dissertation, we only used the graph structure to study security and privacy problems.

For a specific security or privacy problem, nodes and edges in the graph could have problem-specific

rich features. In future, we will extend our methods to incorporate such problem-specific features

to further enhance accuracy. For instance, for Sybil detection in social networks, each node could

have rich content and behavior features. Our methods can use these node features to learn the prior

reputation scores of nodes. Moreover, an edge could have features such as interaction frequency

between the two users. We can model the weight of an edge as a function of the edge’s features,

e.g., a logistic function. Then, we can design algorithms to learn the parameters in the function.

For instance, we can design an objective function with respect to such parameters and then use

gradient descent to optimize the parameters.
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6.2.3 Generalizing Our Methods to Other Application Domains

In this dissertation, we have studied collective classification methods for Sybil detection in

social networks (e.g., Twitter and Sina Weibo), attribute inference attacks in social networks (e.g.,

Google+), and fake review detection in Yelp.

Recently, we have obtained the URL redirection graph and the domain redirection graph from

collaborators; the user-store ordering graph from Jingdong. Therefore, in future, we will also

consider generalizing our collective classification methods to detect malicious domains and malicious

users in e-commerce in these datasets.
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APPENDIX. THEOREM PROOFS

Proof of Theorem 3 in Section 3.3.1

We denote Zu = qu
∏

v∈Γ(u) fvu + (1− qu)
∏

v∈Γ(u)(1− fvu). Rewriting pu = 1
Zu
qu
∏

v∈Γ(u) fvu

with the corresponding residual variables yields

0.5 + p̂u =
1

Zu

(
0.5 + q̂u

) ∏
v∈Γ(u)

(
0.5 + f̂vu

)
=⇒ ln(1 + 2p̂u) = − lnZu + ln(1 + 2q̂u) +

∑
v∈Γ(u)

ln
(
0.5 + f̂vu

)
= − lnZu + ln(1 + 2q̂u) +

∑
v∈Γ(u)

ln
(
0.5
)

+
∑

v∈Γ(u)

ln(1 + 2f̂vu)

Using approximation ln(1 + x) ≈ x when x is small, we have:

2p̂u = − lnZu + 2q̂u + |Γ(u)| · ln(0.5) +
∑

v∈Γ(u)

2f̂vu. (.1)

Similarly, via rewriting 1 − pu = 1
Zu

(1 − qu)
∏

v∈Γ(u)(1 − fvu) with the corresponding residual

variables and using approximation ln(1− x) ≈ −x when x is small, we have:

− 2p̂u = − lnZu − 2q̂u + |Γ(u)| · ln(0.5)−
∑

v∈Γ(u)

2f̂vu. (.2)

Adding Equation .1 with Equation .2 yields lnZu = |Γ(u)|·ln(0.5). Via substituting this relation

into Equation .1 or Equation .2, we have:

p̂u = q̂u +
∑

v∈Γ(u)

f̂vu. (.3)

Proof of Theorem 7 in Section 3.4.2

Overview: We leverage the classic analysis methods proposed by the authors of SybilRank.

Specifically, SybilRank proposed the following three classic steps: 1) modeling the exchange of

trust scores between benign region and Sybil region in each iteration, 2) modeling the trust score
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dynamics in the benign and Sybil regions, and 3) assuming the increased trust scores in the Sybil

region all focus on a small group of Sybils. We follow these three steps to analyze residual pos-

terior probabilities in the simplified version of SybilSCAR-D. However, one key difference is that

SybilSCAR-D uses a different local rule with SybilRank, and thus the mathematical details in all

the three steps are different.

Notations: We denote by B and S the set of benign nodes and Sybils, respectively. We denote

by d(B) and d(S) the average degree of benign nodes and Sybil nodes, respectively. We denote by

|B| and |S| the number of benign nodes and Sybils, respectively. For a node set N , we denote its

volume as the sum of degrees of nodes in N , i.e., V ol(N ) =
∑

u∈N du. Moreover, we have

CB =
g

V ol(B)
, CS =

g

V ol(S)
, (.4)

which were introduced by SybilRank. We denote by P̂
(t)
B and P̂

(t)
S the average residual posterior

probability of benign nodes and Sybils in the tth iteration, respectively. Initially, P̂
(0)
S = 0 (since

we do not consider labeled Sybils in the training dataset) and P̂
(0)
B < 0.

Exchange of residual posterior probabilities between benign region and Sybil region: In

the (t+ 1)th iteration, the average residual posterior probability of Sybils and the average residual

posterior probability of benign nodes can be approximated as follows:

P̂
(t+1)
S = CS P̂

(t)
B + (1− CS)P̂

(t)
S , (.5)

P̂
(t+1)
B = CBP̂

(t)
S + (1− CB)P̂

(t)
B . (.6)

We take Equation .5 as an example to illustrate how we derive the equations. In the considered

version of SybilSCAR-D, in each iteration, a node’s residual posterior probability is the average of

its neighbors’ residual posterior probabilities. Since we assume the attack edges are randomly es-

tablished between benign nodes and Sybils, the total residual posterior probability propagated from

the benign nodes to Sybils is gP̂
(t)
B . Moreover, the total residual posterior probability propagated

within the Sybils is (V ol(S) − g)P̂
(t)
S , because each edge between Sybils contributes one copy of

P̂
(t)
S on average. Since each node takes the average of its neighbors’ residual posterior probabilities,

each Sybil has an average residual posterior probability P̂
(t+1)
S as 1

|S|d(S)(gP̂
(t)
B + (V ol(S)− g)P̂

(t)
S ),

which gives us Equation .5.
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Note that the derivation of Equations .5 and .6 is inspired by SybilRank Cao et al. (2012).

However, since SybilSCAR-D and SybilRank use different local rules (though both are linear local

rules), their exchange dynamics between benign region and Sybil region are different. This difference

leads to different dynamics within benign/Sybil region and eventually leads to different security

guarantees. Given Equations .5 and .6, we have:

P̂
(t+1)
B − P̂ (t+1)

S = (1− CB − CS)(P̂
(t)
B − P̂

(t)
S ). (.7)

Dynamics in the Sybil and benign regions: The decrease of the average residual posterior

probabilities of Sybils is as follows:

P̂
(t+1)
S − P̂ (t)

S = CS(P̂
(t)
B − P̂

(t)
S ) = CS(1− CB − CS)(P̂

(t)
B − P̂

(t)
S ) = (1− CB − CS)tCS(P̂

(0)
B − P̂

(0)
S ), (.8)

where the above equation is negative (so we call it a decrease) because (P̂
(0)
B − P̂

(0)
S ) is negative.

Therefore, we have:

P̂
(t)
S − P̂

(0)
S =

t−1∑
i=0

(1− CB − CS)t × CS(P̂
(0)
B − P̂

(0)
S ). (.9)

Similarly, the increase of the average residual posterior probabilities of benign nodes is as follows:

P̂
(t+1)
B − P̂ (t)

B = −CB(P̂
(t)
B − P̂

(t)
S ) = −(1− CB − CS)tCB(P̂

(0)
B − P̂

(0)
S ) = −(1− CB − CS)t × CB(P̂

(0)
B − P̂

(0)
S ),

(.10)

where the above equation is positive (so we call it an increase) because (P̂
(0)
B − P̂

(0)
S ) is negative.

Furthermore, we have:

P̂
(t)
B − P̂

(0)
B = −

t−1∑
i=0

(1− CB − CS)t × CB(P̂
(0)
B − P̂

(0)
S ). (.11)

Security guarantee: We assume after Ω = O(log |V |) iterations, benign nodes have similar

residual posterior probabilities, which are the average residual posterior probability of benign nodes.

We note that SybilRank relies on a similar assumption, i.e., after O(log |V |) iterations, benign

nodes have similar degree-normalized trust scores. We assume the decrease of residual posterior

probabilities of Sybils all focus on nS Sybils, which gives an upper bound of Sybils whose residual

posterior probabilities are smaller than benign nodes. If we want these Sybils to have residual

posterior probabilities that are smaller than benign nodes, then we have:

0− (P̂
(0)
S − P̂

(Ω)
S )|S|

nS
< P̂

(Ω)
B ⇐⇒ nS <

(P̂
(Ω)
S − P̂ (0)

S )|S|
P̂

(Ω)
B − 0

⇐⇒ nS <
(P̂

(Ω)
S − P̂ (0)

S )|S|
P̂

(Ω)
B − P̂ (0)

S

, (.12)
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where the last step holds because P̂
(0)
S = 0. Moreover, we have:

(P̂
(Ω)
S − P̂ (0)

S )|S|
P̂

(Ω)
B − P̂ (0)

S

=
(P̂

(Ω)
S − P̂ (0)

S )|S|
P̂

(Ω)
B − P̂ (0)

B + P̂
(0)
B − P̂

(0)
S

(.13)

=

∑
0≤t≤(Ω−1)(1− CS − CB)tCS(P̂

(0)
B − P̂

(0)
S )|S|

(1−
∑

0≤t≤(Ω−1)(1− CS − CB)tCB)(P̂
(0)
B − P̂

(0)
S )

(.14)

<

∑
0≤t≤(Ω−1)(1− CS)tCS |S|

(1−
∑

0≤t≤(Ω−1)(1− CS − CB)tCB)
(.15)

=
(1− (1− CS)Ω)|S|

1− 1−(1−CS−CB)Ω

CS+CB
CB

(.16)

≈ CSΩ|S|

1− 1−(1−(CS+CB)Ω+
Ω(Ω−1)

2
(CS+CB)2)

CS+CB
CB

(.17)

≈ gΩ

d(S)(1− (Ω− Ω2

2
(CS + CB))CB)

(.18)

<
gΩ

d(S)(1− (Ω− Ω2

2
(CS + CB))(CS + CB))

(.19)

=
gΩ

d(S)( 1
2

+ 1
2
(Ω(CS + CB)− 1)2)

(.20)

≤ 2gΩ

d(S)
, (.21)

where in Equation .17, we use the first-order and second-order Taylor expansion on nominator

and denominator, respectively; In Equation .18, we use CS = g
V ol(S) , V ol(S) = d(S)|S|, and

Ω(Ω− 1)(CS + CB) ≈ Ω2(CS + CB). By setting Ω = O(log |V |), we have:

nS = O
(g log |V |

d(S)

)
. (.22)

Proof of Theorem 10 in Section 4.4.2

Our idea is to first linearize Equation 4.12 and then combine the linearized version with Equa-

tion 4.16. Optimizing LBP for a standard pMRF on undirected graphs in Jia et al. Jia et al. (2017b)

also involves linearizing Equation 4.12. In particular, they linearized Equation 4.12 as follows:

p̂(t)
u = q̂u +

∑
v∈Γ(u)

m̂(t)
vu. (.23)

Next, we combine Equation .23 with Equation 4.16 to represent posterior beliefs as matrix form

without explicitly modeling messages. Recall that there are three types of neighbors for each node
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and we can expand Equation .23 as follows:

p̂(t)
u = q̂u +

∑
v∈Γb(u)

m̂(t)
vu +

∑
v∈Γi(u)

m̂(t)
vu +

∑
v∈Γo(u)

m̂(t)
vu. (.24)

Therefore, we expect to solve m̂
(t)
vu for u over its bidirectional neighbors, unidirectional incoming

neighbors, and unidirectional outgoing neighbors. Towards this goal, we leverage the bidirectional

adjacency matrix Ab, the unidirectional incoming adjacency matrix Ai, and unidirectional outgoing

adjacency matrix Ao. For a bidirectional neighbor v, m̂
(t)
vu can be rewritten as m̂

(t)
vu = 2p̂

(t−1)
v ŵ

according to Lemma 9. For an unidirectional incoming neighbor, m̂
(t)
vu = 0 when p̂

(t−1)
v > 0. For

an unidirectional outgoing neighbor, m̂
(t)
vu = 0 when p̂

(t−1)
v < 0. Therefore, we define an indicator

function I(Y) over a matrix Y, where an entry is set to be 0 if the corresponding entry of the matrix

Y is non-negative, otherwise it is set to be 1. With these notations, we can obtain Equation 4.17

via combining Equation .24 with Equation 4.16.

Proof of Theorem 11 in Section 4.5

A
′(t)
i and Ai are binary matrices. For any iteration t, we have A

′(t)
i = I(Ai◦P̂(t)T )≤ Ai◦I(P̂(t)T )

≤ Ai, where the comparison between two matrices is element-wise. Similarly, we have A
′(t)
o ≤ Ao.

Therefore, we have ‖Ab + A
′(t)
i + A

′(t)
o ‖1 ≤ ‖Ab + Ai + Ao‖1 for any iteration t.

As ρ(M) ≤ ‖M‖1, we achieve a sufficient condition via enforcing ‖M‖1 < 1, where M =

2ŵ(Ab + A
′(t)
i + A

′(t)
o ) in optimized GANG. Specifically, we have the following derivations:

ρ(2ŵ(Ab + A
′(t)
i + A′(t)o )) < 1

⇐= ‖2ŵ(Ab + A
′(t)
i + A′(t)o )‖1 < 1

⇐= 2ŵ‖Ab + Ai + Ao‖1 < 1

⇐= ŵ <
1

2‖Ab + Ai + Ao‖1
.

Finally, ‖Ab + Ai + Ao‖1 = maxu∈V du.
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